На каком принципе основана водородная бомба. Водородная бомба

Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия - ядерной бомбы . С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью.

Чем отличается водородная бомба от ядерной

Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения. Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран:

  • Ядерная (атомная) бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга.
  • Водородная (термоядерная) бомба. Энергия выделяется на основе синтеза ядер водорода (отсюда пошло и название). Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы.

Что мощнее: ядерная или водородная бомба?

Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз . Даже трудно представить, что было бы с Хиросимой (да и с самой Японией), если бы в брошенной на нее 20-ти килотонной бомбе был водород.

Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн:

  • Огненный шар : диаметр в 4,5 -5 километра в диаметре.
  • Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров.
  • Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.
  • Ядерный гриб : высота более 70 км в высоту, радиус шапки - около 50 км.

Атомные бомбы такой мощности еще ни разу не взрывали. Есть показатели бомбы сброшенной на Хиросиму в 1945 году, но своими размерами она значительно уступала водородному разряду описанному выше:

  • Огненный шар : диаметр около 300 метров.
  • Ядерный гриб : высота 12 км, радиус шапки - около 5 км.
  • Энергия : температура в центре взрыва достигала 3000С°.

Сейчас на вооружении ядерных держав стоят именно водородные бомбы . Кроме того, что они опережают по своим характеристикам своих «малых братьев », они значительно дешевле в производстве.

Принцип действия водородной бомбы

Разберем пошагово, этапы приведения в действие водородных бомб :

  1. Детонация заряда . Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде.
  2. Расщепление лития . Под воздействием нейтронов, литий расщепляется на гелий и тритий.
  3. Термоядерный синтез . Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв.

Принцип действия атомной бомбы

  1. Детонация заряда . В оболочке бомбы находится несколько изотопов (уран, плутоний и т.п.), которые поле детонации распадаются и захватывают нейтроны.
  2. Лавинообразный процесс . Разрушение одного атома, инициируют к распаду еще нескольких атомов. Идет цепной процесс, который влечет за собой к разрушению большого количества ядер.
  3. Ядерная реакция . За очень короткое времени все части бомбы образуют одно целое, и масса заряда начинает превышать критическую массу. Освобождается огромное количество энергии, после этого происходит взрыв.

Опасность ядерной войны

Еще в середине прошлого века опасность ядерной войны была маловероятна. В своем арсенале атомное оружие имели две страны - СССР и США. Лидеры двух супердержав прекрасно понимали опасность применения оружия массового поражения, и гонка вооружений велась, скорее всего, как «соревнующее» противостояние.

Безусловно напряженные моменты в отношении держав были, но здравый смысл всегда брал верх над амбициями.

Ситуация изменилась в конце 20 века. «Ядерной дубинкой» завладели не только развитые страны западной Европы, но и представители Азии.

Но, как вы наверное знаете, «ядерный клуб » состоит из 10 стран. Неофициально считается, что ядерные боеголовки имеет Израиль, и возможно Иран. Хотя последние, после наложения на них экономических санкций, отказались от развития ядерной программы.

После возникновения первой атомной бомбы, ученые СССР и США начали думать об оружии, которое бы не несло такие большие разрушения и заражения территорий противника, а целенаправленно действовало на организм человека. Возникла идея о создании нейтронной бомбы .

Принцип действия заключается во взаимодействии нейтронного потока с живой плотью и военной техникой . Образованные радиоактивнее изотопы моментально уничтожают человека, а танки, транспортеры и другое оружие на кратковременное время становятся источниками сильного излучения.

Нейтронная бомба взрывается на расстоянии 200 метров до уровня земли, и особенно эффективна при танковой атаке противника. Броня военной техники толщиной в 250 мм, способна уменьшить действия ядерной бомбы в разы, но бессильна перед гамма-излучениями нейтронной бомбы. Рассмотрим действия нейтронного снаряда мощностью до 1 килотонна на экипаж танка:

Как вы поняли, отличие водородной бомбы от атомной огромна. Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз .

При использовании термоядерной бомбы в 1 мегатонн, в радиусе 10 километров будет уничтожено все. Пострадают не только постройки и техника, но и все живое.

Об этом должны помнить главы ядерных стран, и использовать «ядерную» угрозу исключительно как сдерживающий инструмент, а не в качестве наступательного оружия.

Видео о различиях атомной и водородной бомбы

На этом видео будет подробно и пошагово описан принцип действия атомной бомбы, а также основные отличия от водородной:

ВОДОРОДНАЯ БОМБА
оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.
Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H2O) показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.
Последствия взрыва. Ударная волна и тепловой эффект. Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва - это радиоактивное заражение окружающей среды.
Радиоактивные осадки. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
См. также
ЯДЕРНЫЙ СИНТЕЗ ;
ЯДЕРНОЕ ОРУЖИЕ ;
ВОЙНА ЯДЕРНАЯ .
ЛИТЕРАТУРА
Действие ядерного оружия. М., 1960 Ядерный взрыв в космосе, на земле и под землей. М., 1970

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ВОДОРОДНАЯ БОМБА" в других словарях:

    Устаревшее название ядерной бомбы большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза легких ядер (см. Термоядерные реакции). Впервые водородная бомба была испытана в СССР (1953) … Большой Энциклопедический словарь

    Термоядерное оружие тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно… … Википедия

    Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). Первый термоядерный заряд (мощностью 3 Мт) взорван 1 ноября 1952 в США.… … Энциклопедический словарь

    водородная бомба - vandenilinė bomba statusas T sritis chemija apibrėžtis Termobranduolinė bomba, kurios užtaisas – deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb rus. водородная бомба ryšiai: sinonimas – H bomba … Chemijos terminų aiškinamasis žodynas

    водородная бомба - vandenilinė bomba statusas T sritis fizika atitikmenys: angl. hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f pranc. bombe à hydrogène, f … Fizikos terminų žodynas

    водородная бомба - vandenilinė bomba statusas T sritis ekologija ir aplinkotyra apibrėžtis Bomba, kurios branduolinis užtaisas – vandenilio izotopai: deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f … Ekologijos terminų aiškinamasis žodynas

    Бомба взрывного действия большой разрушительной силы. Действие В. б. основано на термоядерной реакции. См. Ядерное оружие … Большая советская энциклопедия

Как советские физики делали водородную бомбу, какие плюсы и минусы несло в себе это страшное оружие, читайте в рубрике «История науки».

После Второй мировой войны говорить о фактическом наступлении мира было еще нельзя – две крупные мировые державы вступили в гонку вооружений. Одной из граней этого конфликта оказалось противостояние СССР и США в создании ядерного оружия. В 1945 году США, первыми негласно вступившие в гонку, сбросили ядерные бомбы на печально известные города Хиросима и Нагасаки. В Советском Союзе тоже велись работы по созданию ядерного оружия, и в 1949 году испытали первую атомную бомбу, рабочим веществом в которой был плутоний. Еще во время ее разработки советская разведка выяснила, что США переключились на разработку более мощной бомбы. Это подтолкнуло СССР заняться изготовлением термоядерного оружия.

Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний.

Андрей Сахаров

Владимир Федоренко/Wikimedia Commons

Сахаров предложил покрыть ядро из плутония несколькими слоями легких и тяжелых элементов, а именно ураном и дейтерием – изотопом водорода. Впоследствии, правда, дейтерий предложили заменить на дейтерид лития – это значительно упростило конструкцию заряда и его эксплуатацию. Дополнительным преимуществом было то, что из лития после бомбардировки нейтронами получается еще один изотоп водорода - тритий. Вступая в реакцию с дейтерием, тритий выделяет гораздо больше энергии. К тому же литий еще и замедляет нейтроны лучше. Такая структура бомбы и подарила ей прозвище «Слойка».

Определенная сложность состояла в том, что толщина каждого слоя и их окончательное количество также были очень важны для успешного испытания. По расчетам, от 15% до 20% выделения энергии при взрыве приходилось на термоядерные реакции, а еще 75-80% - на деление ядер урана-235, урана-238 и плутония-239. Предполагалось также, что мощность заряда составит от 200 до 400 килотонн, практический результат оказался на верхней границе прогнозов.

В день Х, 12 августа 1953 года, первую советскую водородную бомбу проверили в действии. Семипалатинский испытательный полигон, на котором произошел взрыв, находился в Восточно-Казахстанской области. Испытанию РДС-6с предшествовала попытка 1949 года (тогда на полигоне провели наземный взрыв бомбы мощностью 22,4 килотонны). Несмотря на изолированное положение полигона, население региона на себе прочувствовало всю прелесть ядерных испытаний. Люди, жившие сравнительно недалеко от полигона на протяжение десятков лет, вплоть до закрытия полигона в 1991 году, подвергались радиационному облучению, а территории за много километров от полигона оказались загрязнены продуктами ядерного распада.

Первая советская водородная бомба РДС-6с

Wikimedia Commons

За неделю до испытания РДС-6с, по рассказам очевидцев, военные выдали семьям проживавших неподалеку от полигона деньги и продукты, но никакой эвакуации и информирования о предстоящих событиях не последовало. Радиоактивный грунт с самого полигона увезли, а ближайшие сооружения и наблюдательные пункты восстановили. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета.

Предыдущие испытания атомных зарядов разительно отличались от того, что зафиксировали ядерщики после испытания «слойки Сахарова». Энерговыход бомбы, которую критики называют не термоядерной бомбой, а атомной бомбой с термоядерным усилением, оказался в 20 раз больше, чем у предыдущих зарядов. Это было заметно невооруженным взглядом в солнечных очках: от уцелевших и восстановленных зданий после испытания водородной бомбы осталась только пыль.

30 октября 1961 года на советском ядерном полигоне на Новой Земле прогремел самый мощный взрыв в истории человечества. Ядерный гриб поднялся на высоту 67 километров, а диаметр «шляпки» это гриба составил 95 километров. Ударная волна трижды обогнула земной шар (а взрывной волной сносило деревянные постройки на расстоянии нескольких сотен километров от полигона). Вспышку взрыва было видно с расстояния в тысячу километров, невзирая на то, что над Новой Землей висела густая облачность. В течение почти часа во всей Арктике не работала радиосвязь. Мощность взрыва по разным данным составила от 50 до 57 мегатонн (миллионов тонн тротила).

Впрочем, как пошутил Никита Сергеевич Хрущев, мощность бомбы не стали доводить до 100 мегатонн, только потому, что в этом случае в Москве выбило бы все стекла. Но, в каждой шутке есть доля шутки – первоначально планировалось взорвать именно 100 мегатонную бомбу. И взрыв на Новой Земле убедительно доказал, что создание бомбы мощностью хоть в 100 мегатонн, хоть в 200, - вполне осуществимая задача. Но и 50 мегатонн – это почти в десять раз больше мощности всех боеприпасов, истраченных за всю Вторую Мировую войну всеми странами - участницами. К тому же, в случае испытания изделия мощностью в 100 мегатонн от полигона на Новой Земле (да и от большей части этого острова) остался бы только оплавленный кратер. В Москве стекла, скорее всего, уцелели бы, но вот в Мурманске могли и вылететь.


Макет водородной бомбы. Историко-мемориальный Музей ядерного оружия в Сарове

Устройство, взорванное на высоте 4200 метров над уровнем моря 30 октября 1961 года, вошло в историю под именем «Царь-Бомба». Еще одно неофициальное название - «Кузькина Мать». А официальное название этой водородной бомбы было не столь громким – скромное изделие АН602. Военного значения это чудо-оружие не имело – не тоннах тротилового эквивалента, а в обычных метрических тоннах «изделие» весило 26 тонн и его было бы проблематично доставить до «адресата». Это была демонстрация силы – наглядное доказательство того, что Стране Советов по силам создать оружие массового уничтожения любой мощности. Что же заставило руководство нашей страны пойти на столь беспрецедентный шаг? Разумеется, не что иное, как обострение отношений с Соединенными Штатами. Еще совсем недавно казалось, что США и Советский Союз достигли взаимопонимания по всем вопросам – в сентябре 1959 года Хрущев посетил США с официальным визитом, планировался и ответный визит в Москву президента Дуайта Эйзенхауэра. Но 1 мая 1960 года над советской территорией был сбит американский самолет-разведчик U-2. В апреле 1961 года американские спецслужбы организовали высадку на Кубу отрядов хорошо подготовленных и обученных кубинских эмигрантов в заливе Плайя-Хирон (эта авантюра завершилась убедительной победой Фиделя Кастро). В Европе великие державы не могли определиться со статусом Западного Берлина. В итоге,13 августа 1961 года столица Германии оказалась перегороженной знаменитой Берлинской стеной. Наконец, в том 1961 году США разместили в Турции ракеты PGM-19 «Юпитер» - европейская часть России (включая Москву) находилась в пределах дальности действия этих ракет (годом позже Советский Союз разместит ракеты на Кубе и начнется знаменитый Карибский Кризис). Это не говоря уж о том, что паритета по числу ядерных зарядов и их носителей тогда между Советским Союзом и Америкой тогда не было – 6 тысячам американских боеголовок мы могли противопоставить всего триста. Так что, демонстрация термоядерной мощи была в сложившейся ситуации совсем не лишней.

Советский короткометражный фильм про испытание Царь-бомбы

Существует популярный миф, что сверхбомбу разработали по приказу Хрущева все в том же 1961 году в рекордно короткие сроки – всего за 112 дней. На самом деле разработку бомбы вели с 1954 года. А в 1961 разработчики просто довели уже имеющиеся «изделие» до нужной мощности. Параллельно КБ Туполева занималось модернизацией самолетов Ту-16 и Ту-95 под новое оружие. По первоначальным расчетам вес бомбы должен был составить не менее 40 тонн, но авиаконструкторы объяснили ядерщикам, что на данный момент носителей для изделия с таким весом нет и быть не может. Ядерщики пообещали снизить вес бомбы до вполне приемлемых 20 тонн. Правда, и такой вес и такие габариты требовали полной переделки бомбовых отсеков, креплений, бомболюков.


Взрыв водородной бомбы

Работа над бомбой велась группой молодых физиков-ядерщиков под руководством И.В. Курчатова. В эту группу входил и Андрей Сахаров, который в ту пору еще не помышлял о диссидентстве. Более того, он был одним из ведущих разработчиков изделия.

Такой мощности удалось добиться благодаря применению многоступенчатой конструкции – урановый заряд, мощностью в «всего» полторы мегатонны запускал ядерную реакцию в заряде второй ступени, мощностью в 50 мегатонн. Не меняя габаритов бомбы можно было сделать ее и трехступенчатой (это уже за 100 мегатонн). Теоретически – число зарядов ступеней могло быть ничем не ограниченным. Конструкция бомбы была уникальной для своего времени.

Хрущев торопил разработчиков – в октябре в только что построенном Кремлевском Дворце Съездов отрывался XXII съезд КПСС и огласить новость о самом мощном взрыве в истории человечества надо бы именно с трибуны съезда. И 30 октября 30 октября 1961 года Хрущев получил долгожданную телеграмму за подписью министра среднего машиностроения Е. П. Славского и Маршала Советского Союза К. С. Москаленко (руководителей испытания):


"Москва. Кремль. Н. С. Хрущеву.

Испытание на Новой Земле прошло успешно. Безопасность испытателей и близлежащего населения обеспечена. Полигон и все участники выполнили задание Родины. Возвращаемся на съезд".

Взрыв Царь-Бомбы почти сразу же послужил благодатной почвой для разного рода мифов. Некоторые из них распространялись … официальной печатью. Так, например, «Правда» называла «Царь-Бомбу» не иначе как вчерашним днем атомного оружия и утверждала, что сейчас уже созданы более мощные заряды. Не обошлось и без слухов о самоподдерживающейся термоядерной реакции в атмосфере. Снижение мощности взрыва, по мнению некоторых, было вызвано страхом расколоть земную кору или … вызвать термоядерную реакцию в океанах.

Но, как бы то ни было, годом позже, во время Карибского кризиса США все еще имели подавляющее превосходство по числу ядерных зарядов. Но применить их так и не решились.

Кроме того, считается, что этот мега-взрыв помог сдвинуть с мертвой точки переговоры о запрете ядерных испытаний в трех средах, которые велись в Женеве с конца пятидесятых годов. В 1959-60 все ядерные державы, за исключением Франции, приняли односторонний отказ от испытаний, пока идут эти переговоры. Но о причинах, которые заставили Советский Союз не соблюдать взятые на себя обязательства, мы говорили ниже. После взрыва на Новой Земле переговоры возобновились. И 10 октября 1963 года в Москве был подписан «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой». Пока этот Договор соблюдается, советская Царь-Бомба останется самым мощным взрывным устройством в человеческой истории.

Современная компьютерная реконструкция

Водородная, или термоядерная бомба стала краеугольным камнем гонки вооружений между США и СССР. Две сверхдержавы несколько лет спорили о том, кто станет первым обладателем нового вида разрушительного оружия.

Проект термоядерного оружия

В начале холодной войны испытание водородной бомбы было для руководства СССР важнейшим аргументом в борьбе с США. В Москве хотели достичь ядерного паритета с Вашингтоном и вкладывали в гонку вооружений огромные средства. Впрочем, работы по созданию водородной бомбы начались не благодаря щедрому финансированию, а из-за донесений законспирированной агентуры в Америке. В 1945 года в Кремле узнали о том, что в США идет подготовка к созданию нового оружия. Это была сверхбомба, проект которой получил название Super.

Источником ценной информации был Клаус Фукс - сотрудник Лос-Аламосской национальной лаборатории США. Он передал Советскому Союзу конкретные сведения, которые касались секретных американских разработок сверхбомбы. К 1950 году проект Super был выброшен в корзину, так как западным ученым стало ясно, что такая схема нового оружия не может быть реализована. Руководителем этой программы был Эдвард Теллер.

В 1946 году Клаус Фукс и Джон развили идеи проекта Super и запатентовали собственную систему. Принципиально новым в ней был принцип радиоактивной имплозии. В СССР эту схему начали рассматривать несколько позже - в 1948 году. В целом можно сказать, что на стартовом этапе полностью базировался на американских информации, полученной разведкой. Но, продолжая исследования уже на основе этих материалов, советские ученые заметно опередили своих западных коллег, то позволило СССР получить сначала первую, а потом и самую мощную термоядерную бомбу.

17 декабря 1945 года на заседании специального комитета, созданного при Совете Народных комиссаров СССР, физики-ядерщики Яков Зельдович, Исаак Померанчук и Юлий Хартион выступили с докладом «Использование ядерной энергии легких элементов». В этом документе рассматривалась возможность использования бомбы с дейтерием. Данное выступление стало началом советской ядерной программы.

В 1946 году теоретические исследования тали проводиться в Институте химической физики. Первые результаты этой работы были обсуждены на одном из заседаний Научно-технического совета в Первом главном управлении. Еще через два года Лаврентий Берия поручил Курчатову и Харитону проанализировать материалы о системе фон Неймана, которые были доставлены в Советский Союз благодаря законспирированной агентуре на западе. Данные из этих документов дали дополнительный импульс исследованиям, благодаря которым родился проект РДС-6.

«Иви Майк» и «Кастл Браво»

1 ноября 1952 года американцы испытали первое в мире термоядерное Это была еще не бомба, но уже ее важнейшая составная часть. Подрыв произошел на атолле Энивотек, в Тихом океане. и Станислав Улам (каждый из них фактически создатель водородной бомбы) незадолго до того разработали двухступенчатую конструкцию, которую американцы и опробовали. Устройство не могло использоваться в качестве оружия, так как производился с помощью дейтерия. Кроме того, оно отличалось огромным весом и габаритами. Такой снаряд просто нельзя было сбросить с самолета.

Испытание первой водородной бомбы было проведено советскими учеными. После того как в США узнали об успешном использовании РДС-6с, стало ясно что необходимо как можно быстрее сократить отставание от русских в гонке вооружений. Американское испытание прошло 1 марта 1954 года. В качестве полигона был выбран атолл Бикини на Маршалловых островах. Тихоокеанские архипелаги выбирались не случайно. Здесь почти не было населения (а те немногие люди, которые жили на близлежащих островах, были выселена накануне эксперимента).

Самый разрушительный взрыв водородной бомбы американцев стал известен как «Кастл Браво». Мощность заряда оказалась в 2,5 раза выше предполагаемой. Взрыв привел к радиационному заражению значительной площади (множества островов и Тихого океана), что привело к скандалу и пересмотру ядерной программы.

Разработка РДС-6с

Проект первой советской термоядерной бомбы получил название РДС-6с. План был написан выдающимся физиком Андреем Сахаровым. В 1950 году Совет министров СССР постановил сосредоточить работы над созданием нового оружия в КБ-11. Согласно этому решению, группа ученых под руководством Игоря Тамма отправилась в закрытый Арзамас-16.

Специально для этого грандиозного проекта был подготовлен Семипалатинский полигон. Перед тем как началось испытание водородной бомбы, там были установлены многочисленные измерительные, киносъемочные и регистрирующие приборы. Кроме того, по поручению ученых там появились почти две тысячи индикаторов. Область, которую затронуло испытание водородной бомбы, включала в себя 190 сооружений.

Семипалатинский эксперимент был уникальным не только из-за нового вида оружия. Использовались уникальные заборники, предназначенные для химических и радиоактивных проб. Их могла открыть только мощная ударная волна. Регистрирующие и киносъемочные приборы были установлены в специально подготовленных укрепленных сооружениях на поверхности и в подземных бункерах.

Alarm Clock

Еще в 1946 году Эдвард Теллер, работавший в США, разработал прототип РДС-6с. Он получил название Alarm Clock. Первоначально проект этого устройства был предложен как альтернатива Super. В апреле 1947 года в лаборатории в Лос-Аламосе началась целая серия экспериментов, предназначенная для исследования природы термоядерных принципов.

От Alarm Clock ученые ожидали наибольшего энерговыделения. Осенью Теллер решил использовать в качестве горючего для устройства дейтерид лития. Исследователи еще не использовали это вещество, но ожидали, что оно позволит повысить эффективность Интересно, что Теллер уже тогда отмечал в своих служебных записках зависимость ядерной программы от дальнейшего развития компьютеров. Эта техника была необходима ученым для более точных и сложных расчетов.

Alarm Clock и РДС-6с имели много общего, но многим и отличались. Американский вариант не был столь практичным как советский из-за своей величины. Большие размеры он унаследовал от проекта Super. В конце концов, американцам пришлось отказаться от этой разработки. Последние исследования прошли в 1954 году, после чего стало ясно, что проект нерентабелен.

Взрыв первой термоядерной бомбы

Первое в человеческой истории испытание водородной бомбы произошло 12 августа 1953 года. Утром на горизонте появилась ярчайшая вспышка, которая слепила даже через защитные очки. Взрыв РДС-6с оказался в 20 раз мощнее атомной бомбы. Эксперимент был признан удачным. Ученые смогли достичь важного технологического прорыва. Впервые в качестве горючего был использован гидрид лития. В радиусе 4 километров от эпицентра взрыва волной уничтожило все постройки.

Последующие испытания водородной бомбы в СССР основывались на опыте, полученном при использовании РДС-6с. Это разрушительное оружие было не только самым мощным. Важным достоинством бомбы являлась ее компактность. Снаряд помещался в бомбардировщик Ту-16. Успех позволил советским ученым опередить американцев. В США в это время было термоядерное устройство, размером с дом. Оно было нетранспортабельным.

Когда в Москве заявили, что водородная бомба СССР уже готова, в Вашингтоне оспорили эту информацию. Главным аргументом американцев был тот факт, что термоядерная бомба должна быть изготовлена по схеме Теллера-Улама. В ее основе лежал принцип радиационной имплозии. Этот проект будет реализован в СССР через два года, в 1955-м.

В создание РДС-6с наибольший вклад внес физик Андрей Сахаров. Водородная бомба была его детищем - именно он предложил революционные те технические решения, которые позволили успешно завершить испытания на Семипалатинском полигоне. Молодой Сахаров сразу же стал академиком в АН СССР, Героем Социалистического Труда и лауреатом Сталинской премии. Наград и медалей удостоились и другие ученые: Юлий Харитон, Кирилл Щелкин, Яков Зельдович, Николай Духов и т. д. В 1953 испытание водородной бомбы показало, что советская наука может преодолеть то, что еще совсем недавно казалось выдумкой и фантастикой. Поэтому сразу после успешного взрыва РДС-6с началась разработка еще более мощных снарядов.

РДС-37

20 ноября 1955 года прошли очередные испытания водородной бомбы в СССР. На этот раз она была двухступенчатой и соответствовала схеме Теллера-Улама. Бомбу РДС-37 собирались сбросить с самолета. Однако, когда он поднялся в воздух, стало ясно что испытания придется проводить при нештатной ситуации. Вопреки прогнозам синоптиков, заметно испортилась погода, из-за чего полигон накрыла плотная облачность.

Впервые специалисты оказались вынуждены сажать самолет с термоядерной бомбой на борту. Некоторое время на Центральном командном пункте шла дискуссия о том, что делать дальше. Рассматривалось предложение сбросить бомбу в горах неподалеку, однако этот вариант был отклонен, как слишком рискованный. Меж тем самолет продолжал кружить рядом с полигоном, вырабатывая горючее.

Решающее слово получили Зельдович и Сахаров. Водородная бомба, взорвавшаяся не на полигоне, привела бы к катастрофе. Ученые понимали всю степень риска и собственной ответственности, и все-таки дали письменное подтверждение того, что посадка самолета будет безопасной. Наконец, командир экипажа Ту-16 Федор Головашко получил команду приземляться. Посадка была очень плавной. Летчики проявили все свои умения и не запаниковали в критической ситуации. Маневр был идеальным. В Центральном командном пункте облегченно выдохнули.

Создатель водородной бомбы Сахаров и его команда перенесли испытания. Вторая попытка была намечена на 22 ноября. В этот день все прошло без внештатных ситуаций. Бомбу сбросили с высоты в 12 километров. Пока снаряд падал, самолет успел удалиться на безопасное расстояние от эпицентра взрыва. Через несколько минут ядерный гриб достиг высоты 14 километров, а его диаметр - 30 километров.

Взрыв не обошелся без трагических происшествий. От ударной волны на расстоянии в 200 километров выбивало стекла, из-за чего пострадало несколько человек. Также погибла девочка, жившая в соседнем ауле, на которую обвалился потолок. Еще одной жертвой стал солдат, находившийся в специальном выжидательном районе. Солдата засыпало в землянке, и он умер от удушья до того, как товарищи смогли вытащить его.

Разработка «Царь-бомбы»

В 1954 году лучшие физики-ядерщики страны под руководством начали разработку мощнейшей в истории человечества термоядерной бомбы. В этом проекте также приняли участие Андрей Сахаров, Виктор Адамский, Юрий Бабаев, Юрий Смирнов, Юрий Трутнев и т. д. Благодаря своей мощности и размеру бомба стала известна как «Царь-бомба». Участники проекта позже вспоминали, что эта фраза появилась после знаменитого высказывания Хрущева о «Кузькиной матери» в ООН. Официально же проект назывался АН602.

За семь лет разработок бомба пережила несколько реинкарнаций. Сначала ученые планировали использовать компоненты из урана и реакцию Джекилла-Хайда, однако позже от этой идеи пришлось отказаться из-за опасности радиоактивного загрязнения.

Испытание на Новой Земле

На некоторое время проект «Царь-бомба» был заморожен, так как Хрущев собирался в США, а в холодной войне наступила короткая пауза. В 1961 году конфликт между странами разгорелся вновь и в Москве снова вспомнили о термоядерном оружии. Хрущев сообщил о предстоящих испытаниях в октябре 1961 года во время XXII съезда КПСС.

30 числа Ту-95В с бомбой на борту вылетел из Оленьи и направился на Новую Землю. Самолет добирался до цели два часа. Очередная советская водородная бомба была сброшена на высоте в 10,5 тысяч метров над ядерным полигоном «Сухой Нос». Снаряд взорвался еще в воздухе. Возник огненный шар, который достиг диаметра трех километров и почти коснулся земли. Согласно подсчетам, ученых сейсмическая волна от взрыва три раза пересекла планету. Удар чувствовался за тысячу километров, а все живое на расстоянии ста километров могло получить ожоги третьей степени (этого не произошло, так как данный район был необитаемым).

На тот момент наиболее мощная термоядерная бомба США в мощности уступала «Царю-бомбе» в четыре раза. Советское руководство было довольно результатом эксперимента. В Москве получили то, чего так хотели от очередной водородной бомбы. Испытание продемонстрировало, что у СССР есть оружие куда более мощное чем у США. В дальнейшем разрушительный рекорд «Царя-бомбы» так и не был побит. Самый мощный взрыв водородной бомбы стал важнейшей вехой в истории науки и холодной войны.

Термоядерное оружие других стран

Британские разработки водородной бомбы начались в 1954 году. Руководителем проекта был Уильям Пенней, который до того был участником манхэттенского проекта в США. Англичане обладали крохами информации о строении термоядерного оружия. Американские союзники не делились этой информацией. В Вашингтоне ссылались на закон об атомной энергии, принятый в 1946 году. Единственным исключением для британцев было разрешение вести наблюдения за испытаниями. Кроме того, они использовали самолеты для сбора проб, оставшихся после взрывов американских снарядов.

Сперва в Лондоне решили ограничиться созданием очень мощной атомной бомбы. Так начались испытания «Оранжевый вестник». В ходе них была сброшена самая мощная из не термоядерных бомб в истории человечества. Ее недостатком была чрезмерная дороговизна. 8 ноября 1957 года была испытана водородная бомба. История создания британского двухступенчатого устройства - это пример успешного прогресса в условиях отставания от двух споривших между собой сверхдержав.

В Китае водородная бомба появилась в 1967 году, во Франции - в 1968-м. Таким образом, в клубе стран-обладательниц термоядерного оружия сегодня пять государств. Спорными остаются сведения о водородной бомбе в Северной Корее. Глава КНДР заявлял, что его ученые смогли разработать такой снаряд. В ходе испытаний сейсмологи разных стран зафиксировали сейсмическую активность, вызванную ядерным взрывом. Но никакой конкретной информации о водородной бомбе в КНДР до сих пор нет.