Какие процессы происходят в ядерном реакторе. Работа атом­ной электростанции. Классификации ядерных реакторов

Ядерный реактор, принцип действия, работа ядерного реактора.

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор . Именно его мы будем разбирать в этой статье.

Ядерный реактор , устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “Чикагская стопка”. Chicago Pile (впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U 235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U 235 . При столкновении уран U 235 превращается в нестабильный изотоп U 236 , который практически сразу же распадается на Kr 92 и Ba 141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор промышленного типа представляет собой котел, сквозь который протекает теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

ТВЭЛы в кассете выделены зеленым.

Топливная кассета в сборе.

Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Управляющие могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет крышку, через которую производится погрузка и выгрузка отработавших и новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.

Каж­дый день мы исполь­зуем элек­три­че­сто и не заду­мы­ва­емся над тем, как оно про­из­во­дится и как оно к нам попало. А тем не менее это одна из самых важ­ных частей совре­мен­ной циви­ли­за­ции. Без элек­три­че­ства не было бы ничего - ни света, ни тепла, ни движения.

Все знают про то, что элек­три­чевто выра­ба­ты­ва­ется на элек­тро­стан­циях, в том числе и на атом­ных. Сердце каж­дой АЭС - это ядер­ный реак­тор . Именно его мы будем раз­би­рать в этой статье.

Ядер­ный реак­тор , устрой­ство в кото­ром про­ис­те­кает управ­ля­е­мая цеп­ная ядер­ная реак­ция с выде­ле­нием тепла. В основ­ном ти устрой­ства исполь­зу­ются для выра­ботки элек­тро­энер­гии и в каче­стве при­вода боль­ших кораб­лей. Для того, чтобы пред­ста­вить себе, мощ­ность и эко­но­мич­ность ядер­ных реак­то­ров можно при­ве­сти при­мер. Там где сред­нему ядер­ному реак­тору потре­бу­ется 30 кило­грамм урана, сред­ней ТЭЦ потре­бу­ется 60 ваго­нов угля или 40 цистерн мазута.

Про­об­раз ядер­ного реак­тора был построен в декабре 1942 года в США под руко­вод­ством Э. Ферми. Это была так назы­ва­е­мая “Чикаг­ская стопка”. Chicago Pile (впо­след­ствии слово “Pile” наряду с дру­гими зна­че­ни­ями стало обо­зна­чать ядер­ный реак­тор). Такое назва­ние дали ему из-за того, что он напо­ми­нал собой боль­шую стопку гра­фи­то­вых бло­ков, поло­жен­ных один на другой.

Между бло­ками была поме­щены шаро­об­раз­ные “рабо­чие тела”, из при­род­ного урана и его диоксида.

В СССР пер­вый реак­тор был построен под руко­вод­ством ака­де­мика И. В. Кур­ча­това. Реак­тор Ф-1 был зара­бо­тал 25 декабря 1946 г. Реак­тор был в форме шара, имел в диа­метре около 7,5 мет­ров. Он не имел системы охла­жде­ния, поэтому рабо­тал на очень малых уров­нях мощности.


Иссле­до­ва­ния про­дол­жи­лись и в 27 июня 1954 года всту­пила в строй пер­вая в мире атом­ная элек­тро­стан­ция мощ­но­стью 5 МВт в г. Обнинске.

Прин­цип дей­ствия атом­ного реактора.

При рас­паде урана U 235 про­ис­хо­дит выде­ле­ние тепла, сопро­вож­да­е­мое выбро­сом двух-трех ней­тро­нов. По ста­ти­сти­че­ским дан­ным - 2,5. Эти ней­троны стал­ки­ва­ются с дру­гими ато­мами урана U 235 . При столк­но­ве­нии уран U 235 пре­вра­ща­ется в неста­биль­ный изо­топ U 236 , кото­рый прак­ти­че­ски сразу же рас­па­да­ется на Kr 92 и Ba 141 + эти самые 2–3 ней­трона. Рас­пад сопро­вож­да­ется выде­ле­нием энер­гии в виде гамма излу­че­ния и тепла.

Это и назы­ва­ется цеп­ная реак­ция. Атомы делятся, коли­че­ство рас­па­дов уве­ли­чи­ва­ется в гео­мет­ри­че­ской про­грес­сии, что в конеч­ном итоге при­во­дит к мол­ние­нос­ному, по нашим мер­кам высво­бож­де­нию огром­ного коли­че­ства энер­гии - про­ис­хо­дит атом­ный взрыв, как послед­ствие неуправ­ля­е­мой цеп­ной реакции.

Однако в ядер­ном реак­торе мы имеем дело с управ­ля­е­мой ядер­ной реак­цией. Как такая ста­но­вится воз­мож­ной - рас­ска­зано дальше.

Устрой­ство ядер­ного реактора.

В насто­я­щее время суще­ствует два типа ядер­ных реак­то­ров ВВЭР (водо-водяной энер­ге­ти­че­ский реак­тор) и РБМК (реак­тор боль­шой мощ­но­сти каналь­ный). Отли­чие в том, что РБМК - кипя­щий реак­тор, а ВВЭР исполь­зует воду под дав­ле­нием в 120 атмосфер.

Реак­тор ВВЭР 1000. 1 - при­вод СУЗ; 2 - крышка реак­тора; 3 - кор­пус реак­тора; 4 - блок защит­ных труб (БЗТ); 5 - шахта; 6 - выго­родка актив­ной зоны; 7 - топ­лив­ные сборки (ТВС) и регу­ли­ру­ю­щие стержни;

Каж­дый ядер­ный реак­тор про­мыш­лен­ного типа пред­став­ляет собой котел, сквозь кото­рый про­те­кает теп­ло­но­си­тель. Как пра­вило это обыч­ная вода (ок. 75% в мире), жид­кий гра­фит (20%) и тяже­лая вода (5%). В экс­пе­ри­мен­таль­ных целях исполь­зо­вался бери­лий и пред­по­ла­гался углеводород.

ТВЭЛ - (теп­ло­вы­де­ля­ю­щий эле­мент). Это стержни в цир­ко­ни­е­вой обо­лочке с нио­бий­ным леги­ро­ва­нием, внутри кото­рых рас­по­ло­жены таб­летки из диок­сида урана.

ТВЭЛы в кас­сете выде­лены зеленым.


Топ­лив­ная кас­сета в сборе.

Актив­ная зона реак­тора состоит из сотен кас­сет, постав­лен­ных вер­ти­кально и объ­еди­нен­ных вме­сте метал­ли­че­ской обо­лоч­кой - кор­пу­сом, игра­ю­щим также роль отра­жа­те­лем ней­тро­нов. Среди кас­сет, с регу­ляр­ной часто­той встав­лены управ­ля­ю­щие стержни и стержни ава­рий­ной защиты реак­тора, кото­рые в слу­чае пере­грева при­званы заглу­шить реактор.

При­ве­дем в при­мер дан­ные по реак­тору ВВЭР-440:

Управ­ля­ю­щие могут пере­ме­щаться вверх и вниз погру­жа­ясь или наобо­рот, выходя из актив­ной зоны, где реак­ция идет интен­сив­нее всего. Это обес­пе­чи­вают мощ­ные элек­тро­мо­торы, в сово­куп­но­сти с систе­мой управления.Стержни ава­рий­ной защиты при­званы заглу­шить реак­тор в слу­чает нештат­ной ситу­а­ции, упав в актив­ную зону и погло­тив больше коли­че­ство сво­бод­ных нейтронов.

Каж­дый реак­тор имеет крышку, через кото­рую про­из­во­дится погрузка и выгрузка отра­бо­тав­ших и новых кассет.

Поверх кор­пуса реак­тора обычно уста­нав­ли­ва­ется теп­ло­изо­ля­ция. Сле­ду­ю­щим барье­ром идет био­ло­ги­че­ская защита. Это как пра­вило желе­зо­бе­тон­ный бун­кер, вход в кото­рый закры­ва­ется шлю­зо­вой каме­рой с гер­ме­тич­ными дверьми. Био­ло­ги­че­ская защита при­звана не выпу­стить в атмо­сферу радио­ак­тив­ный пар и куски реак­тора, если все таки про­изой­дет взрыв.

Ядер­ный взрыв в совре­мен­ных реак­тора крайне мало воз­мо­жен. Потому что топ­ливо доста­точно мало обо­га­щено, и раз­де­лено на ТВЕЛы. Даже если рас­пла­вится актив­ная зона, топ­ливо не смо­жет настолько активно про­ре­а­ги­ро­вать. Маси­мум что может про­изойти - теп­ло­вой взрыв как на Чер­но­быле, когда дав­ле­ние в реак­торе достигло таких вели­чин, что метал­ли­че­ский кор­пус про­сто разо­рвало, а крышка реак­тора, весом в 5000 тонн сде­лала пры­жок с пере­во­ро­том, про­бив крышу реак­тор­ного отсека и выпу­стив пар наружу. Если бы чер­но­быль­ская АЭС была осна­щена пра­виль­ной био­ло­ги­че­ской защи­той, напо­до­бие сего­дняш­него сар­ко­фага, то ката­строфа обо­шлась чело­ве­че­ству намного дешевле.

Работа атом­ной электростанции.

Если в двух сло­вах, то рабо­боа выгля­дит так.

Атом­ная элек­тро­стан­ция. (Кликабельно)

После поступ­ле­ния в актив­ную зону реак­тора с помо­щью насо­сов, вода нагре­ва­ется с 250 до 300 гра­ду­сов и выхо­дит с “дру­гой сто­роны” реак­тора. Это назы­ва­ется пер­вым кон­ту­ром. После чего направ­ля­ется в теп­л­об­мен­ник, где встре­ча­ется со вто­рым кон­ту­ром. После чего пар под дав­ле­нием посту­пает на лопатки тур­бин. Тур­бины выра­ба­ты­вают электричество.

Так же при необходимости быстро охладить реактор используются ведро воды и лёд .

Элемент Теплоемкость
Охлаждающий стержень 10к (англ. 10k Coolant Cell)
10 000

Охлаждающий стержень 30к (англ. 30К Coolant Cell)
30 000

Охлаждающий стержень 60к (англ. 60К Coolant Cell)
60 000

Красный конденсатор (англ. RSH-Condensator)
19 999
Поместив перегретый конденсатор в сетку крафта вместе с пылью редстоуна можно восполнить его запас тепла на 10000 еТ. Таким образом для полного восстановления конденсатора нужно две пыли.
Лазуритовый конденсатор (англ. LZH-Condensator)
99 999
Восполняется не только редстоуном (5000 еТ), но ещё и лазуритом на 40000 еТ.

Охлаждение ядерного реактора (до версии 1.106)

  • Охлаждающий стержень может хранить 10 000 еТ и каждую секунду охлаждается на 1 еТ.
  • Обшивка реактора так же хранит 10 000 еТ, каждую секунду охлаждается с шансом 10 % на 1 еТ (в среднем 0.1 еТ). Через термопластины твэлы и теплораспределители могут распредилить тепло на большее число охлаждающих элементов.
  • Теплораспределитель хранит 10 000 еТ, а также балансирует уровень тепла близлежащих элементов, но перераспределяя не более 6 еТ/с на каждый. Также перераспределяет тепло на корпус, до 25 еТ/с.
  • Пассивное охлаждение.
  • Каждый блок воздуха, окружающий реактор в области 3х3х3 вокруг ядерного реактора, охлаждает корпус на 0.25 еТ/с, и каждый блок воды охлаждает на 1 еТ/с.
  • Кроме того, реактор сам по себе охлаждается на 1 еТ/с, благодаря внутренней системе вентиляции.
  • Каждая дополнительная камера реактора тоже обладает вентиляцией и охлаждает корпус ещё на 2 еТ/с.
  • Но если в зоне 3х3х3 есть блоки лавы (источники или течения), то они уменьшают охлаждение корпуса на 3 еТ/с. И горящий огонь в этой же области уменьшает охлаждение на 0,5 еТ/с.
Если суммарное охлаждение отрицательно, то охлаждение будет нулевым. То есть корпус реактора не будет охлаждаться. Можно посчитать, что максимальное пассивное охлаждение: 1+6*2+20*1 = 33 еТ/с.
  • Аварийное охлаждение (до версии 1.106).
Помимо обычных охлаждающих систем, есть «аварийные» охладители, которые могут быть использованы для экстренного охлаждения реактора (даже с высоким тепловыделением):
  • Ведро воды , положенное в активную зону, остужает корпус Ядерного реактора на 250 еТ в случае, если он нагрет не менее, чем на 4 000 еТ.
  • Лёд остужает корпус на 300 еТ в случае, если он нагрет не менее, чем на 300 еТ.

Классификация ядерных реакторов

Ядерные реакторы имеют свою классификацию: МК1, МК2, МК3, МК4 и МК5. Типы определяются по выделению тепла и энергии, а также по некоторым другим аспектам. МК1 - самый безопасный, но вырабатывает меньше всего энергии. МК5 вырабатывает больше всего энергии при наибольшей вероятности взрыва.

MК1

Самый безопасный тип реактора, который совершенно не нагревается, и в то же время производит меньше всего энергии. Подразделяется на два подтипа: МК1А - тот, который соблюдает условия класса вне зависимости от окружающей среды и МК1Б - тот, который требует пассивного охлаждения, чтобы соблюдать стандарты класса 1.

МК2

Самый оптимальный вид реактора, который при работе на полной мощности не нагревается более, чем на 8500 еТ за цикл (время, за которое ТВЭЛ успевает полностью разрядится или 10000 секунд). Таким образом, это оптимальный компромисс тепла/энергии. Для таких типов реакторов также есть отдельная классификация МК2x, где х - это количество циклов, которое реактор будет работать без критического перегрева. Число может быть от 1 (один цикл) до E (16 циклов и больше). MK2-E является эталоном среди всех ядерных реакторов, поскольку является практически вечным. (То есть, до окончания 16 цикла реактор успеет охладится до 0 еТ)

МК3

Реактор, который может работать по крайней мере 1/10 полного цикла без испарения воды/плавления блоков. Более мощный, чем МК1 и МК2, но требует дополнительного присмотра, ведь за некоторое время температура может достигнуть критического уровня.

МК4

Реактор, который может работать по крайней мере 1/10 полного цикла без взрывов. Наиболее мощный из работоспособных видов Ядерных Реакторов, который требует наибольшего внимания. Требует постоянного присмотра. За первый раз издаёт приблизительно от 200 000 до 1 000 000 еЭ.

МК5

Ядерные реакторы 5-ого класса неработоспособны, в основном используются для доказательства того факта, что они взрываются. Хотя возможно сделать и работоспособный реактор такого класса, однако смысла в этом никакого нет.

Дополнительная классификация

Даже несмотря на то, что реакторы и так имеют целых 5 классов, реакторы иногда подразделяют ещё на несколько незначительных, однако немаловажных подклассов вида охлаждения, эффективности и производительности.

Охлаждение

-SUC (single use coolants - одноразовое использование охлаждающих элементов)

  • до версии 1.106 эта маркировка обозначала охлаждение реактора экстренным способом (с помощью вёдер воды или льда). Обычно такие реакторы используются редко или не используются совсем ввиду того, что без присмотра реактор может проработать не очень долго. Это обычно использовалось для Mk3 или Mk4.
  • после версии 1.106 появились тепловые конденсаторы. Подкласс -SUC теперь обозначает наличие в схеме тепловых конденсаторов. Их теплоёмкость можно быстро восстановить, но при этом придётся тратить красную пыль или лазурит .

Эффективность

Эффективность - это среднее число импульсов, производимых твэлами. Грубо говоря, это количество миллионов энергии, получаемой в результате работы реактора, поделённое на число твэлов. Но в случае схем обогатителей часть импульсов расходуется на обогащение, и в этом случае эффективность не совсем соответствует полученной энергии и будет выше.

Сдвоенные и счетверённые твэлы обладают большей базовой эффективностью по сравнению с одиночными. Сами по себе одиночные твэлы производят один импульс, сдвоенные - два, счетверённые - три. Если в одной из четырёх соседних клеток будет находиться другой ТВЭЛ, обеднённый ТВЭЛ или нейтронный отражатель, то число импульсов увеличивается на единицу, то есть максимум ещё на 4. Из вышесказанного становится понятно, что эффективность не может быть меньше 1 или больше 7.

Маркировка Значение
эффективности
EE =1
ED >1 и <2
EC ≥2 и <3
EB ≥3 и <4
EA ≥4 и <5
EA+ ≥5 и <6
EA++ ≥6 и <7
EA* =7

Иные подклассы

На схемах реакторов вы можете иногда увидеть дополнительные буквы, аббревиатуры или другие символы. Эти символы хоть и используются (например, раньше подкласс -SUC официально не был зарегистрирован), но большой популярности они не имеют. Поэтому вы можете назвать свой реактор хоть Mk9000-2 EA^ dzhigurda, однако такой вид реактора просто не поймут и сочтут это за шутку.

Постройка реактора

Все мы знаем, что реактор нагревается, и может внезапно произойти взрыв. И нам приходится то выключать, то включать его. Далее написано, как можно защитить свой дом, а также как максимально использовать реактор, который никогда не взорвётся. При этом у вас должно быть уже поставлены 6 реакторных камер .

    Вид реактора с камерами. Ядерный реактор внутри.

  1. Обложить реактор укреплённым камнем (5х5x5)
  2. Сделать пассивное охлаждение, то есть залить весь реактор водой. Заливайте его сверху, поскольку вода потечёт вниз. С помощью такой схемы реактор будет охлаждаться на 33 еТ за сек.
  3. Сделать максимальное количество вырабатываемой энергии с охлаждающими стержнями и т. д. Будьте внимательны, поскольку если будет неправильно расставленный хотя бы 1 теплораспределитель , может произойти катастрофа! (схема приведена для версии до 1.106)
  4. Дабы наш МФЭ не взорвался от высокого напряжения, ставим трансформатор, как на картинке.

Реактор Mk-V EB

Многим известно, что обновления вносят изменения. Одним из этих обновлений были внесены новые твэлы - сдвоенный и счетверённый. Схема, которая находится выше, не подходит к этим твэлам. Ниже предоставлено подробное описание изготовления довольно опасного, но эффективного реактора. Для этого к IndustrialCraft 2 нужен Nuclear Control. Данный реактор заполнил MFSU и MFE примерно за 30 минут реального времени. К сожалению, это реактор класса МК4. Но он выполнил свою задачу нагревшись до 6500 еТ. Рекомендуется поставить на температурном датчике 6500 и подключить к датчику сигнализацию и экстренную систему отключения. Если тревога орёт дольше двух минут, то лучше выключить реактор вручную. Постройка такая же, как и сверху. Изменено лишь расположение компонентов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: 10 мин. 26 сек.

Время перезарядки: Невозможно

Максимум циклов: 6,26 % цикла

Общее время: Никогда

Самое главное в таком реакторе - не дать ему взорваться!

Реактор Mk-II-E-SUC Breeder EA+ с возможностью обогащения обеднённых твэлов

Достаточно эффективный но дорогостоящий вид реактора. За минуту вырабатывает 720 000 еТ и конденсаторы нагреваются на 27/100, следовательно, без охлаждения конденсаторов реактор выдержит 3 минутных цикла, а 4-й почти наверняка взорвёт его. Возможна установка обеднённых твэлов для обогащения. Рекомендуется подключение реактора к таймеру и заключение реактора в «саркофаг» из укреплённого камня. Из-за высокого выходного напряжения (600 еЭ/т) необходимы высоковольтные провода и трансформатор ВН.

Выходная мощность: 600 еЭ/т

Всего еЭ: 120 000 000 еЭ

Время генерации: Полный цикл

Реактор Mk-I EB

Элементы не нагреваются вообще, работают 6 счетверённых твэлов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA++

Маломощный, но экономичный к сырью и дешёвый в постройке. Требует отражателей нейтронов .

Выходная мощность: 60 еЭ/т

Всего еЭ: 12 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA*

Средней мощности но относительно дешёвый и максимально эффективный. Требует отражателей нейтронов .

Выходная мощность: 140 еЭ/т

Всего еЭ: 28 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-II-E-SUC Breeder EA+, обогащение урана

Компактный и дешёвый к постройке обогатитель урана. Время безопасной работы - 2 минуты 20 секунд, после чего рекомендуется чинить лазуритовые конденсаторы (ремонт одного - 2 лазурита + 1 редстоун), из-за чего придется постоянно следить за реактором. Также из-за неравномерного обогащения сильно обогащенные стержни рекомендуется менять местами со слабо обогащенными. В то же время может выдать за цикл 48 000 000 еЭ.

Выходная мощность: 240 еЭ/т

Всего еЭ: 48 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EC

«Комнатный» реактор. Имеет невысокую мощность, зато очень дешёв и абсолютно безопасен - весь присмотр за реактором сводится к замене стержней, поскольку охлаждение вентиляцией превышает теплогенерацию в 2 раза. Лучше всего поставить его вплотную к МФЭ /МФСУ и настроить их на подачу сигнала редстоуна при частичной зарядке (Emit if partially filled), таким образом реактор будет автоматически заполнять энергохранитель и отключаться при его заполнении. Для крафта всех компонентов потребуется 292 меди, 102 железа, 24 золота, 8 редстоуна, 7 резины, 7 олова, 2 единицы светопыли и лазурита, а также 6 единиц урановой руды. За цикл выдает 16 млн еЭ.

Выходная мощность: 80 еЭ/т

Всего еЭ: 32 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: около 5 ч. 33 мин. 00 сек.

Таймер реактора

Реакторы классов MK3 и MK4 вырабатывают действительно много энергии в короткие сроки, но они имеют тенденцию взрываться без присмотра. Но с помощью таймера, можно заставить даже эти капризные реакторы работать без критического перегрева и позволить вам отлучится, например, чтобы накопать песочка для вашей фермы кактусов. Вот три примера таймеров:

  • Таймер из раздатчика , деревянной кнопки и стрел (Рис. 1). Выпущенная стрела - это сущность , время её жизни равно 1 минуте. При подсоединении деревянной кнопки с застрявшей в ней стрелой к реактору, тот будет работать ~ 1 мин. 1.5 сек. Лучше всего будет открыть доступ к деревянной кнопке, тогда можно будет экстренно остановить реактор. Заодно меньшится расход стрел, так как при соединении раздатчика с ещё одной кнопкой, кроме деревянной, после нажатия раздатчик выпускает сразу 3 стрелы из-за множественного сигнала.
  • Таймер из деревянной нажимной пластины (Рис. 2). Деревянная нажимная пластина реагирует, если на неё упадет какой-либо предмет. У выпавших передметов «срок жизни» равен 5 минутам (в SMP возможны отклонения из-за пинга), и если подсоединить пластину к реактору, тот будет работать ~ 5 мин. 1 сек. При создании множества таймеров, можно поставить этот таймер на первое место в цепочке, чтобы не ставить раздатчик . Тогда все цепь таймеров будет запускаться выбрасыванием игроком предмета на нажимную пластину.
  • Таймер из повторителей (Рис. 3). Таймер из повторителей может использоваться для точной настройки задержки работы реактора, но он очень громоздок и требует большое количество ресурсов для создания даже малой задержки. Сам таймер - это линия поддержки сигнала (10.6) . Как видно, он занимает много места, и на задержку сигнала в 1.2 сек. требуется целых 7 повторителей (21

    Пассивное охлаждение (до версии 1.106)

    Базовое охлаждение самого реактора равно 1. Далее проверяется область 3х3х3 вокруг реактора. Каждая камера реактора добавляет к охлаждению 2. Блок с водой (источником или течением) добавляет 1. Блок с лавой (источником или течением) уменьшает на 3. Блоки с воздухом и огнем считаются отдельно. Они добавляют к охлаждению (число блоков воздуха-2×число блоков с огнем)/4 (если результат деления не целое число, то дробная часть отбрасывается). Если суммарное охлаждение меньше 0, то оно считается равным 0.
    То есть корпус реактора не может нагреться из-за внешних факторов. В худшем случае он просто не будет охлаждаться за счёт пассивного охлаждения.

    Температура

    При высокой температуре реактор начинает отрицательно воздействовать на окружающую среду. Это воздействие зависит от коэффициента нагрева. Коэффициент нагрева=Текущая температура корпуса реактора/Максимальная температура , где Максимальная температура реактора=10000+1000*число камер реактора+100*число термопластин внутри реактора .
    Если коэффициент нагрева:

    • <0,4 - никаких последствий нет.
    • >=0,4 - есть шанс 1,5×(коэффициент нагрева-0,4) , что будет произведён выбор случайного блока в зоне 5×5×5 , и если это окажется воспламеняющийся блок, такой как листья, какой-либо деревянный блок, шерсть или кровать, то он сгорит.
    То есть при коэффициенте нагрева 0,4 шансы нулевые, при 0,67 выше будет 100 %. То есть при коэффициенте нагрева 0,85 шанс будет 4×(0,85-0,7)=0,6 (60 %), а при 0,95 и выше шанс будет 4×(95-70)=1 (100 %). В зависимости от типа блока произойдёт следующее:
    • если это центральный блок (сам реактор) или блок коренной породы, то эффекта не будет.
    • каменные блоки(в том числе ступеньки и руда), железные блоки(в том числе и блоки реактора), лава, земля, глина будут превращены в поток лавы.
    • если это блок воздуха, то на его месте будет попытка зажечь огонь (если рядом нет твёрдых блоков, огонь не появится).
    • остальные блоки (в том числе и вода) будут испаряться, и на их месте тоже будет попытка зажечь огонь.
    • >=1 - Взрыв! Базовая мощность взрыва равна 10. Каждый ТВЭЛ в реакторе увеличивает мощность взрыва на 3 единицы, а каждая обшивка реактора уменьшает его на единицу. Также мощность взрыва ограничена максимумом в 45 единиц. По числу выпадения блоков этот взрыв аналогичен ядерной бомбе, 99 % блоков после взрыва уничтожатся, а дроп составит лишь 1 %.

    Расчёт нагрева или низкообогащённый ТВЭЛ , то корпус реактора нагревается на 1 еТ.

  • Если это ведро воды , и температура корпуса реактора больше 4000 еТ, то корпус охлаждается на 250 еТ, а ведро воды заменяется на пустое ведро.
  • Если это ведро лавы , то корпус реактора нагревается на 2000 еТ, а ведро лавы заменяется на пустое ведро.
  • Если это блок льда , и температура корпуса более 300 еТ, то корпус охлаждается на 300 еТ, а количество льда уменьшается на 1. То есть сразу весь стак льда не испарится.
  • Если это теплораспределитель , то проводится такой расчёт:
    • Проверяется 4 соседние ячейки, в следующем порядке: левая, правая, верхняя и нижняя.
Если в них есть охлаждающая капсула или обшивка реактора, то производится рассчёт баланса тепла. Баланс=(температура теплораспределителя-температура соседнего элемента)/2
  1. Если баланс больше 6, он приравнивается 6.
  2. Если соседний элемент - охлаждающая капсула, то он нагревается на значение вычисленного баланса.
  3. Если это обшивка реактора, то производится дополнительный расчёт передачи тепла.
  • Если рядом с этой пластиной нет охлаждающих капсул, то пластина нагреется на значение вычисленного баланса (на другие элементы тепло от теплораспределителя через термопластину не идёт).
  • Если есть охлаждающие капсулы, то проверяется, делится ли баланс тепла на их количество без остатка. Если не делится, то баланс тепла увеличивается на 1 еТ, и пластина охлаждается на 1 еТ, пока не будет делиться нацело. Но если обшивка реактора остывшая, и нацело баланс не делится, то она нагревается, а баланс уменьшается, пока не станет делиться нацело.
  • И, соответственно, эти элементы нагреваются на температуру, равную Баланс/количество .
  1. Он берется по модулю, и если он больше 6, то приравнивается к 6.
  2. Теплораспределитель нагревается на значение баланса.
  3. Соседний элемент охлаждается на значение баланса.
  • Производится расчёт баланса тепла между теплораспределителем и корпусом.
Баланс=(температура теплораспределителя-температура корпуса+1)/2 (если результат деления не целое число, то дробная часть отбрасывается)
  • Если баланс положительный, то:
  1. Если баланс больше 25, он приравнивается к 25.
  2. Теплораспределитель охлаждается на значение вычисленного баланса.
  3. Корпус реактора нагревается на значение вычисленного баланса.
  • Если баланс отрицательный, то:
  1. Он берется по модулю и если получается больше 25, то он приравнивается к 25.
  2. Теплораспределитель нагревается на значение вычисленного баланса.
  3. Корпус реактора охлаждается на значение вычисленного баланса.
  • Если это ТВЭЛ, и реактор не заглушен сигналом красной пыли, то проводятся такие расчёты:
Считается число импульсов, генерирующих энергию для данного стержня. Число импульсов=1+количество соседних урановых стержней . Соседние - это те, которые находятся в слотах справа, слева, сверху и снизу. Подсчитывается количество энергии генерируемое стержнем. Количество энергии(еЭ/т)=10×Число импульсов . еЭ/т - единица энергии за такт (1/20 часть секунды) Если рядом с урановым стержнем есть обеднённый ТВЭЛ , то число импульсов увеличивается на их количество. То есть Число импульсов=1+количество соседних урановых стержней+количество соседних обеднённых твэлов . Также проверяются эти соседние обеднённые твэлы , и с некоторой вероятностью они обогащаются на две единицы. Причём шанс обогащения зависит от температуры корпуса и если температура:
  • менее 3000 - шанс 1/8 (12,5 %);
  • от 3000 и менее 6000 - 1/4 (25 %);
  • от 6000 и менее 9000 - 1/2 (50 %);
  • 9000 или выше - 1 (100 %).
При достижении обеднённым твэлом значения обогащения в 10000 единиц, он превращается в низкообогащённый ТВЭЛ . Дальше для каждого импульса рассчитывается генерация тепла. То есть расчёт производится столько раз, сколько получилось импульсов. Считается количество охлаждающих элементов (охлаждающие капсулы, термопластины и теплораспределители) рядом с урановым стержнем. Если их количество равно:
  • 0? корпус реактора нагревается на 10 еТ.
  • 1: охлаждающий элемент нагревается на 10 еТ.
  • 2: охлаждающие элементы нагреваются каждый на 4 еТ.
  • 3: нагреваются каждый на 2 еТ.
  • 4: нагреваются каждый на 1 еТ.
Причём если там есть термопластины, то они будет также перераспределять энергию. Но в отличие от первого случая, пластины рядом с урановым стержнем могут распределить тепло и на охлаждающие капсулы, и на следующие термопластины. А следующие термопластины могут распределить тепло дальше лишь на охлаждающие стержни . ТВЭЛ уменьшает свою прочность на 1 (изначально она равна 10000), и если она достигает 0, то он уничтожается. Дополнительно с шансом 1/3 при уничтожении он оставит после себя исчерпанный ТВЭЛ .

Пример расчёта

Существуют программы, рассчитывающие эти схемы. Для более надёжных расчётов и большего понимания процесса стоит использовать их.

Возьмем к примеру такую схему с тремя урановыми стержнями.

Цифрами обозначен порядок расчёта элементов в этой схеме, и этими же цифрами будем обозначать элементы, чтобы не запутаться.

Для примера рассчитаем распределение тепла на первой и второй секундах. Будем считать, что вначале нагрев элементов отсутствует, пассивное охлаждение максимально (33 еТ), и охлаждение термопластин не будем учитывать.

Первый шаг.

  • Температура корпуса реактора 0 еТ.
  • 1 - Обшивка реактора (ТП) ещё не нагрета.
  • 2 - Охлаждающая капсула (ОхС) ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (0 еТ), что нагреет её до 8 еТ, и на 2й ОхС (0 еТ), что нагреет его до 8 еТ.
  • 4 - ОхС ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 5 - Теплораспределитель (ТР), ещё не нагретый, сбалансирует температуру со 2м ОхС (8 еТ). Охладит его до 4 еТ и сам нагреется до 4 еТ.
Далее 5й ТР (4 еТ) сбалансирует температуру у 10го ОхС (0 еТ). Нагреет его до 2 еТ, и сам охладится до 2 еТ. Далее 5й ТР (2 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 1 еТ. Корпус нагреется до 1 еТ, и ТР охладится до 1 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (1 еТ), что нагреет его до 13 еТ, и на 7ю ТП (0 еТ), что нагреет её до 12 еТ.
  • 7 - ТП уже нагрета до 12 еТ и может охладиться с шансом 10 %, но мы не учитываем тут шанс охлаждения.
  • 8 - ТР (0 еТ) сбалансирует температуру у 7й ТП (12 еТ), и заберет у неё 6 еТ. 7я ТП охладится до 6 еТ, и 8й ТР нагреется до 6 еТ.
Далее 8й ТР(6 еТ) сбалансирует температуру у 9го ОхС(0 еТ). В итоге он нагреет его до 3 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 1 еТ. Далее 8й ТР (1 еТ) сбалансирует температуру корпуса реактора(1 еТ). Так как разницы температур нет, ничего не происходит.
  • 9 - ОхС (3 еТ) охладится до 2 еТ.
  • 10 - ОхС (2 еТ) охладится до 1 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (1 еТ), что нагреет его до 9 еТ, и на 13ю ТП (0 еТ), что нагреет её до 8 еТ.

На рисунке красные стрелочки показывают нагрев от урановых стержней, синие - балансировку тепла теплораспределителями, желтые - распределение энергии на корпус реактора, коричневые - итоговый нагрев элементов на данном шаге, голубые - охлаждение для охлаждающих капсул. Цифры в верхнем правом углу показывают итоговый нагрев, а для урановых стержней - время работы.

Итоговый нагрев после первого шага:

  • корпус реактора - 1 еТ
  • 1ТП - 8 еТ
  • 2ОхС - 4 еТ
  • 4ОхС - 1 еТ
  • 5ТР - 13 еТ
  • 7ТП - 6 еТ
  • 8ТР - 1 еТ
  • 9ОхС - 2 еТ
  • 10ОхС - 9 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 8 еТ

Второй шаг.

  • Корпус реактора охладится до 0 еТ.
  • 1 - ТП, не учитываем охлаждение.
  • 2 - ОхС (4 еТ) охладится до 3 еТ.
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (8 еТ), что нагреет её до 16 еТ, и на 2й ОхС (3 еТ), что нагреет его до 11 еТ.
  • 4 - ОхС (1 еТ) охладится до 0 еТ.
  • 5 - ТР (13 еТ) сбалансирует температуру со 2м ОхС (11 еТ). Нагреет его до 12 еТ, и сам охладится до 12 еТ.
Далее 5й ТР (12 еТ) сбалансирует температуру у 10го ОхС (9 еТ). Нагреет его до 10 еТ, и сам охладится до 11 еТ. Далее 5й ТР (11 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 6 еТ. Корпус нагреется до 6 еТ, и 5й ТР охладится до 5 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (5 еТ), что нагреет его до 17 еТ, и на 7ю ТП (6 еТ), что нагреет её до 18 еТ.
  • 7 - ТП (18 еТ), не учитываем охлаждение.
  • 8 - ТР (1 еТ) сбалансирует температуру у 7й ТП (18 еТ) и заберёт у неё 6 еТ. 7я ТП охладится до 12 еТ, и 8й ТР нагреется до 7 еТ.
Далее 8й ТР (7 еТ) сбалансирует температуру у 9го ОхС (2 еТ). В итоге он нагреет его до 4 еТ, и сам охладится до 5 еТ. Далее 8й ТР (5 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 2 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру корпуса реактора (6 еТ), забрав у него 2 еТ. Корпус охладится до 4 еТ, и 8й ТР нагреется до 4 еТ.
  • 9 - ОхС (4 еТ) охладится до 3 еТ.
  • 10 - ОхС (10 еТ) охладится до 9 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (9 еТ), что нагреет его до 17 еТ, и на 13ю ТП (8 еТ), что нагреет её до 16 еТ.
  • 12 - ОхС (1 еТ) охладится до 0 еТ.
  • 13 - ТП (8 еТ), не учитываем охлаждение.


Итоговый нагрев после второго шага:

  • корпус реактора - 4 еТ
  • 1ТП - 16 еТ
  • 2ОхС - 12 еТ
  • 4ОхС - 2 еТ
  • 5ТР - 17 еТ
  • 7ТП - 12 еТ
  • 8ТР - 4 еТ
  • 9ОхС - 3 еТ
  • 10ОхС - 17 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 16 еТ

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Сибирский государственный технологический университет»

Кафедра физики

Курсовая работа

Устройство ядерного реактора

Выполнил:

ст. гр. 82-2

С.В. Первушин

Проверил:

А.Д. Скоробогатов

Красноярск, 2007

Введение…………………………………………………………………………...3

1) Ядерные реакции……………………………………………………………….5

2) Ядерный реактор. Разновидности, устройство, принцип действия, управление………………………………………………………………………..11

2.1. Управление ядерного реактора……………………………………..12

2.2. Классификация ядерных реакторов………………………………...13

2.3. Ядерный реактор в подкритическом режиме как усилитель энергии……………………………………………………………………………14

2.4. Воспроизводство топлива……………………………………………16

3) Факторы опасности ядерных реакторов. Условия безопасности на атомных станциях…………………………………………………………………………..18

Заключение………………………………………………………………...……..21

Библиографический список……………………………………………..………22

ВВЕДЕНИЕ

«Мельчайшие частицы материи слепляются в результате сильнейшего притяжения, образуя частицы большего размера, но уже менее склонные к притяжению; многие из этих частиц могут опять слепляться, образуя ещё большие частицы с ещё большие частицы с ещё меньшим притяжением друг к другу и так далее в разных последовательностях, пока эта прогрессия не закончится на самых больших частицах, от которых зависят уже и химические реакции и цвет естественных тел, и, которые образуют, наконец, тела ощутимых размеров. Если так, то в природе должны существовать посредники, помогающие частицам вещества близко слепляться друг с другом за счет сильного притяжения. Обнаружение этих посредников и есть задача экспериментальной философии».

И. Ньютон

Мир, в котором мы живем, сложен и многообразен. Издавна человек стремился познать окружающий его мир. Исследования шли в трех направлениях:

    Поиск элементарных составляющих, из которых образована вся окружающая материя.

    Изучение сил, связывающих элементарные составляющие материи.

    Описание движения частиц под действием известных сил.

У философов древней Греции существовало два противоположных взгляда на природу материи. Сторонники одной школы (Демокрит, Эпикур) утверждали, что нет ничего, кроме атомов и пустоты, в которой движутся атомы. Они рассматривали атомы как мельчайшие неделимые частицы, вечные и неизменные, пребывающие в постоянном движении и различающиеся формой и величиной. Сторонники другого направления придерживались прямо противоположной точки зрения. Они считали, что вещество можно делить бесконечно. Сегодня мы знаем, что мельчайшие частицы вещества, сохраняющие его химические свойства - это молекулы и атомы. Однако мы также знаем, что атомы в свою очередь имеют сложную структуру и состоят из атомного ядра и электронов. Атомные ядра состоят из нуклонов - нейтронов и протонов. Нуклоны в свою очередь состоят из кварков. Но разделить нуклоны на составляющие их кварки уже нельзя. Что вовсе не означает, что кварки "элементарны". Понятие элементарности объекта в значительной мере определяется уровнем наших знаний. Поэтому привычное для нас утверждение "состоит из …" на субкварковом уровне может оказаться лишенным смысла. Понимание этого сформировалось в процессе изучения физики субатомных явлений.

    Ядерные реакции

Ядерная реакция это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер.

Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (то есть числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:

Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

Q = (M A + M B – M C – M D)c 2 = ΔMc 2 .

где M A и M B – массы исходных продуктов, M C и M D – массы конечных продуктов реакции. Величина ΔM называется дефектом масс . Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q

Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM должна быть положительной.

Возможны два принципиально различных способа освобождения ядерной энергии.

1. Деление тяжелых ядер . В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др.

Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ.

Основной интерес для ядерной энергетики представляет реакция деления ядра.

В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра.

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющей при делении ядра энергии можно сделать с помощью удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Действительно, отношение N / Z для наиболее тяжелых ядер порядка 1,6, для ядер с массовыми числами от 90 до 145 это отношение порядка 1,3–1,4. Поэтому ядра-осколки испытывают серию последовательных β – -распадов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 1.

Рисунок 1. 1

Схема развития цепной реакции.

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп также может поглощать нейтроны, но при этом не возникает цепной реакции.

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг. Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D 2 O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.

В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической.

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным ) реактором . Схема ядерного реактора на медленных нейтронах приведена на рис. 2.

Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции.

Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98 °C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления. Пар направляется в турбину, соединенную с электрогенератором. Из турбины пар поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен 1/3. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уносится водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.

Однако, главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.

Наряду с описанным выше ядерным реактором, работающим на медленных нейтронах, большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15 % изотопа

Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238, поглощая нейтроны, посредством двух последовательных β – -распадов превращаются в ядра плутония, которые затем можно использовать в качестве ядерного топлива.

Коэффициент воспроизводства таких реакторов достигает 1,5, то есть на 1 кг урана-235 получается до 1,5 кг плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

2. Термоядерные реакции . Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа A. Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A

Реакции слияния легких ядер носят название термоядерных реакций, так как они могут протекать только при очень высоких температурах. Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10 –15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 10 8 –10 9 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой .

Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. Так, например, в реакции слияния ядер дейтерия и трития

выделяется 3,5 МэВ/нуклон. В целом в этой реакции выделяется 17,6 МэВ. Это одна из наиболее перспективных термоядерных реакций.

Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза.

На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.

    Ядерный реактор. Разновидности, устройство, принцип действия, управление

ЯДЕРНЫЙ РЕАКТОР , устройство, в котором осуществляется управляемая ядерная цепная реакция, сопровождаю­щаяся выделением энергии. Первый ядерный реактор построен в декабре 1942 в США под руководством Э. Ферми. В Европе пер­вый ядерный реактор пущен в декабре 1946 в Москве под руководством П. В. Курчатова. Составны­ми частями любого ядерного реактора являются: ак­тивная лона с ядерным топливом, обыч­но окружённая отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиан, защита, система дистанционного управления. Основной ха­рактеристикой ядерного реактора является его мощ­ность. Мощность в 1 Мвт соответствует цепной реакции, в которой происходит 3*10 16 актов деления в 1 сек.

Рисунок 2.1

Схема устройства ядерного реактора.

В активной зоне ядерного реактора находит­ся ядерное топливо, протекает цепная реакция ядерного деления и выделяется энергия. Состояние ядерного реактора характеризуется эффективным коэффициентом К эф размножения нейтронов или реактивностью :

 = (К эф - 1)/К эф.

Если К эф > 1, то цепная реакция нара­стает во времени, ядерный реактор находится в надкритичном состоянии и его реактив­ность ρ > 0; если К эф 1.

В качестве делящегося вещества в боль­шинстве Ядерный реактор применяют 235 U. Если ак­тивная зона, кроме ядерного топлива (природный или обогащённый уран), со­держит замедлитель нейтронов (графит, вода и др. вещества, содержащие лёгкие ядра), то основная часть делений происходит под дей­ствием тепловых нейтронов (тепловой реактор). В ядерном реакторе на тепловых нейтронах может быть использован природный уран, не обогащённый 235 U (такими были пер­вые ядерные реакторы). Если замедлителя в активной зоне нет, то основная часть делении вызыва­ется быстрыми нейтронами с энергией ξ > 10 кэв (быстрый реактор). Воз­можны также реакторы на промежуточных нейтронах с энергией 1 - 1000 эв.

По конструкции ядерные реакторы делятся на гете­рогенные реакторы, в которых ядерное топливо распределено в активной зоне дискретно в виде блоков, между которыми находится замедлитель нейтронов; и гомогенные, реакторы, в которых ядерное топливо и замедлитель представ­ляют однородную смесь (раствор или суспензия). Блоки с ядерным топливом в гетерогенном ядерном реакторе, называются тепловыде­ляющими элементами (ТВЭЛ"ами), об­разуют правильную решётку; объём, при­ходящийся на один ТВЭЛ, называют ячейкой. По характеру использования Ядерный реактор делят­ся на энергетические реакторы и иссле­довательские реакторы. Часто один ядерный реактор выполняет несколько функций.

Выгорание ядерного топлива характе­ризуют суммарной энергией, выделив­шейся в ядерном реакторе на 1 т топлива. Для ядерных реакторов работающих на естественном уране, максимальное выгорание ~ 10 Гвт*сут/т (тяжело­водные ядерные реакторы). В ядерных реакторах со слабо обо­гащённым ураном (2 - 3% 235 U) достига­ется выгорание ~ 20-30 Гвт*cyт/т. В ядерном реакторе на быстрых нейтронах - до 100 Гвт*сут/т. Выгорание 1 Гвт*сут/т соответствует сгоранию 0,1% ядерного топлива.

2.1. Управление ядерного реактора.

Для регулирования ядерного реактора важно, что часть нейтронов при де­лении вылетает из осколков с запазды­ванием. Доля таких запаздываю­щих нейтронов невелика (0.68% для 235 U, 0,22% для 239 Pu). Вре­мя запаздывания Т зап от 0,2 до 55 сек. Если (К эф - 1)   3 / 0 , то число делений в ядерном реакторе растёт (К эф > 1) или падает (К эф

Для управления ядерного реактора служит система управления и защиты (СУЗ). Органы СУЗ делятся на: аварийные, уменьшающие реактивность (вводящие в ядерный реактор отрицательную реактивность) при появлении аварийных сигналов; автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (а значит - и мощность); компенсирующие (компенсация отравления, выгорания, температурных эффектов). В большинстве случаев это стержни, вводимые в активную зону ядерного реактора (сверху или снизу) из веществ, сильно поглощающих нейтроны (Cd, B и др.). Их движение управляется механизмами, сра­батывающими по сигналу приборов, чув­ствительных к величине нейтронного по­тока. Для компенсации выгорания могут использоваться выгорающие поглотители, эффективность которых убывает при за­хвате ими нейтронов (Cd, В, редкозе­мельные элементы), или растворы по­глощающего вещества в замедлителе. Стабильности работы ядерного реактора способствует отрицательный температурный коэффициент реактивности (с ростом температуры  уменьшается). Если этот коэффициент положителен, то работа органов СУЗ суще­ственно усложняется.

Ядерный реактор оснащается системой приборов, информирующих оператора о состоянии ядерного реактора: о потоке нейтронов в разных точ­ках активной зоны, расходе и температуре теплоносителя, уровне ионизирующего излучения в различных частях ядерного реактора и в вспомогательных помещениях, о положе­нии органов СУЗ и др. Информация, получаемая с этих приборов, поступает в ЭВМ, которая может либо выдавать её оператору в обработанном виде (функции учёта), либо на основании математической обработки. Этой информации выдавать рекомендации оператору о необходимых изменениях в режиме работы ядерного реактора (машина - советчик), либо, наконец, осуществлять управление ядерного реактора без участия оператора (управляющая машина).

2.2. Классификация ядерных реакторов

По назначению и мощности ядерные реакторы делятся на несколько групп:

1) экспериментальный реактор (критическая сборка), предназначенный для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов: мощность таких ядерных реакторов не превышает нескольких квт:

2) исследователь­ские реакторы, в которых потоки нейтронов и -квантов, генерируемые в активной зоне, используются для исследований в области ядерной физики, физики твёр­дого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных по­токах (в т. ч. деталей ядерного реактора), для производства изотопов. Мощность исследовательского ядерного реактора не превосходит 100 Мвт: выделяю­щаяся энергия, как правило, не исполь­зуется. К исследовательским ядерным реакторам отно­сится импульсный реактор:

3) изотопные ядерные реакторы, в которых потоки нейтронов исполь­зуются для получения изотопов, в т. ч. Pu и 3 Н для военных целей;

4) энергетические ядерные реакторы, в которых энер­гия, выделяющаяся при делении ядер, используется для выработки электроэнер­гии, теплофикации, опреснения морской воды, в силовых установках на кораблях и т. д. Мощность (тепловая) современного энер­гетического ядерного реактора достигает 3-5 Гвт.

Ядерные реакторы могут различаться также по виду ядерного топлива (естественный уран, слабо обогащённый, чистый делящийся изотоп), по его химическому составу (металлический U, UO 2 , UC и т. д.), по виду теплоносителя (Н 2 О, газ, D 2 O, органические жидкости, расплавленный металл), по роду замедлителя (С, Н 2 О, D 2 O, Be, BeO. гидриды метал­лов, без замедлителя). Наиболее распро­странены гетерогенные Ядерный реактор на тепловых нейтронах с замедлителями - Н 2 О, С, D 2 O и теплоносителями - Н 2 О, газ, D 2 O.

2.3. Ядерный реактор в подкритическом режиме как усилитель энергии

Представим себе, что мы собрали атомный реактор, имеющий эффективный коэффициент размножения нейтронов k эф немного меньше единицы. Облучим это устройство постоянным внешним потоком нейтронов N 0. Тогда каждый нейтрон (за вычетом вылетевших наружу и поглощённых, что учтено в k эф) вызовет деление, которое даст дополнительный поток N 0 k 2 эф. Каждый нейтрон из этого числа снова произведёт в среднем k эф нейтронов, что даст дополнительный поток N 0 k эф и т.д. Таким образом, суммарный поток нейтронов, дающих процессы деления, оказывается равным

N = N 0 (1 + k эф + k 2 эф + k 3 эф + ...) = N 0 k n эф.

Если k эф > 1, ряд в этой формуле расходится, что и является отражением критического поведения процесса в этом случае. Если же k эф

Выделение энергии в единицу времени (мощность) тогда определяется выделением энергии в процессе деления,

нейтронах. Удобно представить поток нейтронов через ток ускорителя

где е- заряд протонов, равный элементарному электрическому заряду. Когда мы выражаем энергию в электрон-вольт, это значит, что мы берём представление Е = еV, где V- соответствующий этой энергии потенциал, содержащий столько вольт, сколько электрон-вольт содержит энергия. Это значит, что с учётом предыдущей формулы можно переписать формулу выделения энергии в виде

Наконец удобно представить мощность установки в виде

где V- потенциал, соответствующий энергии ускорителя, так что VI по известной формуле есть мощность пучка ускорителя: P 0 = VI, а R 0 в предыдущей формуле есть коэффициент для k эф = 0,98,что обеспечивает надёжный запас подкритичности. Все остальные величины известны, и для энергии протонного ускорителя 1 ГэВ имеем
. Мы получили коэффициент усиления 120, что, разумеется, очень хорошо. Однако коэффициент предыдущей формулы соответствует идеальному случаю, когда полностью отсутствуют потери энергии и в ускорителе, и при производстве электроэнергии. Для получения реального коэффициента нужно умножить предыдущую формулу на эффективность ускорителя r у и КПД тепловой электростанции r э. Тогда R=r y r э R 0 . Эффективность ускорения может быть достаточно высокой, например в реальном проекте сильноточного циклотрона на энергию 1ГэВ r y = 0,43. Эффективность производства электроэнергии может составлять 0,42. Окончательно реальный коэффициент усиления R = r y r э R 0 = 21,8, что по-прежнему вполне хорошо, потому что всего 4,6% производимой установкой энергии нужно возвращать для поддержания работы ускорителя. При этом реактор работает только при включенном ускорителе и никакой опасности неконтролируемой цепной реакции не существует.

2.4. Воспроизводство топлива

Для производства энергии в подкритическом режиме требуется хорошо делящийся изотоп. Обычно рассматриваются три возможности 239 Pu, 235 U, 233 U. Очень интересным оказывается последний вариант, связанный с 233 U. Этот изотоп может воспроизводиться в реакторе при облучении интенсивным потоком нейтронов, а это и есть непременное условие роботы реактора в подкритическом режиме. Действительно, представим себе, что реактор заполнен природного тория 232 Th и 233 U. Тогда при облучения реактора нейтронами, полученными с помощью ускорителя, как описано в предыдущем разделе, идут два основных процесса: во-первых, при попадании нейтронов в 233 U происходит деление, которое и является источником энергии, и, во-вторых, при захвате нейтрона ядром 232 Th идёт цепочка реакций.

232 Th+n () 233 Th () 233 Pa () 233 U

Каждая реакция деления приводит к убыли одного ядра 233 U, а каждая предыдущая реакция приводит к появлению такого ядра. Если сравниваются вероятности процесса деления и предыдущего процесса, то кол-во 233 U при работе реактора остаётся постоянной, то есть топливо воспроизводится автоматически. Вероятности процесса определяются их эффективными сечениями согласно формуле определения числа событий N. Из этой формулы мы получаем условия стабильной работы реактора с постоянным содержанием 233 U: n(232 Th)
(232 Th)=n(233 U)(233 U)

где n(.) - плотность ядер соответствующего изотопа. Сечение деления (233 U) = 2,784 барн приведено выше, а сечение захвата нейтрона торием при тех же энергиях (232 Th) = 0,387 барн. Отсюда получаем отношение концентраций 233 U и 232 Th

Таким образом, если мы в качестве рабочего вещества выберем смесь из 88% природного тория и 12% изотопа 233 U, то такой состав, будет длительное время сохраняться при работе реактора. Положение изменится после, того, как будет выработано достаточно большое кол-во тория. После этого нужно производить смену рабочего вещества, но 233 U следует выделить из отработанного вещества и использовать в следующей загрузке. Оценим время, которое может проработать реактор при одной загрузке. Возьмём в качестве примера параметры установки, предлагаемые группой проф. К. Руббиа Здесь ток ускорителя 12,5 мА при энергии 1 ГэВ и исходная масса топлива 28,41 т. Топливо состоит из Окислов ThO 2 и 233 UO 2 . Исходное кол-во ядер 232 Th 5,58 10 28 . При приведённом значении тока производится 1,72 10 18 нейтронов в секунду. В силу соотношения N=N 0 nl эф половина нейтронов захватывается торием, это соответствует 2,7 10 25 захватов в год. Отсюда делается заключение, что при времени работы на одной загрузке порядка нескольких лет будет выработано менее 1% всего кол-ва тория. В проекте принята периодичность замены топлива 5 лет.

Необходимо отметить, что продукты деления 233 U, представляющие большую радиационную опасность, с большой вероятностью участвуют в

реакциях с нейтронами, в результате которых наиболее опасные продукты

деления со средним временем жизни пережигаются, то есть либо переходят в устойчивые изотопы, либо, наоборот, в очень нестабильные, которые быстро распадаются. Таким образом, отпадает необходимость геологического хранения отходов работы атомной электростанции. Это ещё одно несомненное преимущество подкритического режима работы ядерного реактора. При этом, разумеется, часть потока нейтронов расходуется на пережигание отходов, что несколько понижает коэффициент усиления

R = r y r э R 0 = 21,8. Однако эти затраты, вне всякого сомнения, оправданны.

    Факторы опасности ядерных реакторов. Условия безопасности на атомных станциях

Факторы опасности ядерных реакторов достаточно многочисленны. Перечислю лишь некоторые из них. Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала. Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. Очистные сооружения могут уменьшить их. Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу. Необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области. Радиоактивное облучение персонала. Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции. Ядерный взрыв ни в одном реакторе произойти в принципе не может.

Безопасность ядерных реакторов обычно рассматривают с двух точек зрения: ядерной и радиационной. Оценка ядерной безопасности предполагает анализ тех характеристик реактора, которые определяют масштаб возможных изменений мощности реактора, возникающих при различных аварийных ситуациях в системе. Под радиационной безопасностью понимают меры, принимаемые для защиты обслуживающего персонала и населения от неконтролируемой утечки радиоактивности при любом режиме работы реактора, включая аварийный. Радиационная безопасность определяется надежностью системы и степенью гарантий в случае предельно возможных аварий.

Можно ожидать, что, по мере того, как ядерная энергетика будет приобретать доминирующее положение в структуре всей энергетики в целом, преимущества теплотехнической концепции будут все больше утрачиваться. В этих условиях возрастет притягательность концепции физико-химического направления в реакторостроении, которая позволит достигнуть более высоких качественных характеристик АЭС и решить ряд задач энергетики, недоступных для твердотопливных реакторов.

ЖСР (жидкосолевой реактор) в отношении ядерной безопасности имеют ряд характерных особенностей по сравнению с твердотопливными реакторами, состоящими в следующем:

* передача тепла от топлива к промежуточному теплоносителю происходит вне активной зоны реактора, поэтому разрушение поверхности раздела между топливом и теплоносителем не приводит к серьезным нарушениям режима работы активной зоны и изменениям радиоактивности;

* топливо в ЖСР выполняет одновременно функцию теплоносителя первого контура, поэтому в принципе исключается весь комплекс проблем, которые возникают в твердотопливных реакторах при авариях, приводящих к потере теплоносителя;

* непрерывный вывод продуктов деления, особенно нейтронных ядов, а также возможность непрерывной подпитки топливом сводит к минимуму начальный запас реактивности, компенсируемый поглощающими стержнями.

К изменению реактивности ЖСР могут привести следующие аварийные ситуации:

* увеличение концентрации делящихся материалов в топливной соли;

* изменение эффективной доли запаздывающих нейтронов;

* изменение состава и плотности топливной соли и перераспределение ее в активной зоне;

* изменение температуры активной зоны.

Подробный анализ аварийных ситуаций, показывает, что особенности присущие ЖСР позволяют обеспечить достаточно высокую ядерную безопасность и надежно исключить возможность нарушения герметичности топливного контура.

Высокая ядерная безопасность, присущая ЖСР, имеет свою обратную сторону и сопряжена с проблемами, которых нет у твердотопливных реакторов. В отличии от них радиоактивные материалы в ЖСР находятся в жидкой или газовой форме при высокой температуре и циркулирует в топливном контуре и контуре системы переработки топлива. Опасность утечки радиоактивности при нарушении герметичности топливного контура здесь значительно более высокая, чем у твердотопливных реакторов при нарушении твэлов. Поэтому радиоактивная безопасность ЖСР в первую очередь связана с надежной герметизацией топливного контура.

Одной из важнейших проблем при создании ядерного реактора является проблема проектирования средств управления и в особенности системы аварийного отключения (САО). САО должна обеспечивать автоматическую остановку реактора (быстрое гашение цепной реакции) при возникновении аварийной ситуации. Для реализации этого требования САО должна иметь широко разветвленную систему автоматического диагностирования аварийных ситуаций (событий, состояний оборудования, значений параметров, характеризирующих состояние ядерного реактора и его систем).

Кроме того, существует проблема транспортировки облученных элементов на радиохимические предприятия, что означает, что радиоактивные элементы будут "размазаны" по весьма широкой территории. При этом возникает как опасность радиоактивного загрязнения среды вследствие возможных аварий, так и опасность хищения радиоактивных материалов.

Заключение

Атомная энергетика - активно развивающаяся отрасль.

Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. В связи с этим необходимо закладывать решение проблемы безопасности (в частности, предупреждение аварий с разгоном реактора, локализацию аварии в пределах биозащиты, уменьшение радиоактивных выбросов и др.) еще в конструкцию реактора, на стадии его проектирования. Стоит также рассматривать другие предложения по повышению безопасности объектов атомной энергетики, как-то: строительство атомных электростанций под землей, отправка ядерных отходов в космическое пространство. Целью настоящей работы было всего лишь рассказать о современной атомной энергетике, показать устройство и основные типы ядерных реакторов. К сожалению, объем доклада не позволяет более подробно остановиться на вопросах физики реактора, тонкостях конструкции отдельных типов и вытекающих из них проблем эксплуатации, надежности и безопасности.

Библиографический список

1 Абрамов А.И. Измерение «неизмеримого» [Текст] / Абрамов А.И. – 4-е издание, перераб. и доп. – М.: Энергоатомиздат, 1986. – 208 с.

2 Арбузов, Б.А. Физика подкритического ядерного реактора [Текст]/ Арбузов Б.А.// Соросовский общеобразовательный журнал. – 1997.- №1.

3 Блинкин, В.Л. Жидкосолевые ядерные реакторы [Текст] / Блинкин В.Л., Новиков В.М..- М.:Атомиздат, 1978.

4 Вильдермут, К. Единая теория ядра [Текст]: пер. с англ. Тан Я., М. – 1980. – 284 с.

5 Вальтер, А.К. Ядерная физика [Текст]/ Вальтер, А.К., Залюбовский И.И.- Харьков: Основа, 1991.

6 Воронько, В.А. [Текст]/ Воронько В.А. – М.: Атомная энергия, 1990.

7 Ганев, И.Х. Физика и расчет реактора [Текст]/ Ганев И.Х..-М.: Энергоатомиздат, 1992.

8 Давыдов, А.С. Теория атомного ядра [Текст]/ А.С. Давыдов. – М.: Прогресс, 1958 – 256 с.

9 Ионайтис, Р.Р. Нетрадиционные средства управления ядерными реакторами [Текст] / Ионайтис, Р.Р..- М.: Изд-во МГТУ, 1992.

10 Климов, А.Н. Ядерная физика и ядерные реакторы [Текст] / Климов А.Н..- М.: Атомиздат,1985.

11 Мухин, К.Н. Введение в ядерную физику [Текст]/ П.С. Мухин. – М.: Энергоатомиздат, 2 изд., 1965 – 328 с.

12 Матвеев, Л.В. Почти все о ядерном реакторе [Текст]/ Л.В.Матвеев, А.П.Рудик.- М.: Энергоатомиздат, 1990.

13 Справочник пол ядерной энерготехнологии [Текст]: пер. с англ./ Ф. Ран, А. Адмантиадес, Дж. Кентон, И. Браун. – М.:Энергоатомиздат, 1989. – 752 с.

14 Яворский, Б.М. Справочник по физике [Текст] / Яворский Б.М., Детлаф А.А.- М.: Наука,1974.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -