Как найти площадь по формуле пика. Творческая работа " применение формулы пика"

Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат).

Теорема Пика

Формула

Пусть дан некоторый решётчатый многоугольник, с ненулевой площадью.

Обозначим его площадь через ; количество точек с целочисленными координатами, лежащих строго внутри многоугольника — через ; количество точек с целочисленными координатами, лежащих на сторонах многоугольника — через .

Тогда справедливо соотношение, называемое формулой Пика :

В частности, если известны значения I и B для некоторого многоугольника, то его площадь можно посчитать за , даже не зная координат его вершин.

Это соотношение открыл и доказал австрийский математик Георг Александр Пик (Georg Alexander Pick) в 1899 г.

Доказательство

Доказательство производится в несколько этапов: от самых простых фигур до произвольных многоугольников:

Обобщение на высшие размерности

К сожалению, эта столь простая и красивая формула Пика плохо обобщается на высшие размерности.

Наглядно показал это Рив (Reeve), предложив в 1957 г. рассмотреть тетраэдр (называемый теперь тетраэдром Рива ) со следующими вершинами:




где — любое натуральное число. Тогда этот тетраэдр при любых не содержит внутри ни одной точки с целочисленными координатами, а на его границе — лежат только четыре точки , , , и никакие другие. Таким образом, объём и площадь поверхности этого тетраэдра могут быть разными, в то время как число точек внутри и на границе — неизменны; следовательно, формула Пика не допускает обобщений даже на трёхмерный случай.

Тем не менее, некоторое подобное обобщение на пространства большей размерности всё же имеется, — это многочлены Эрхарта (Ehrhart Polynomial), но они весьма сложны, и зависят не только от числа точек внутри и на границе фигуры.

1

Гибадуллина Г.И. (Нурлат, МАОУ СОШ №1)

1. Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3–е изд. – М.: Просвещение, 2014. – 223, с. : ил. – (Сферы).

2. Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций. 5-е изд. – М.: Просвещение, 2016. – 240 с.: ил. – (Сферы).

3. Васильев Н.Б. Вокруг формулы Пика // Квант. – 1974. – №2. – С. 39–43.

4. Рассолов В.В. Задачи по планиметрии. 5–е изд., испр. и доп. – М.: 2006. – 640 с.

5. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов – М.: Изд-во «Национальное образование», 2017. – 240 с. – (ОГЭ. ФИПИ – школе).

6. Решу ОГЭ: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. – Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017).

Я ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы . Данная тема является дополнением и углублением изучения курса геометрии.

Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

1. Ознакомиться с формулой Пика.

2. Овладеть приемами решений геометрических задач с использованием формулы Пика.

3. Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

1. Проверить эффективность и целесообразность применения формулы при решении задач.

2. Научиться применять формулу Пика в задачах разной сложности.

3. Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

Историческая справка

Георг Александр Пик - австрийский математик , родился 10 августа года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так: S=B+Г/2-1, где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него, через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г - n)180°, а сумма углов при вершинах многоугольника будет равна (Г - 2)180°. Таким образом, Т=2.180°. В+(Г-n)180°+(n-2)180°. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12.

S = 24-9-3 = 12 и S = 7+12/2-1 = 12.

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49.

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Библиографическая ссылка

Габбазов Н.Н. ФОРМУЛА ПИКА // Старт в науке. – 2017. – № 6-1. – С. 130-132;
URL: http://science-start.ru/ru/article/view?id=908 (дата обращения: 02.03.2019).

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S - площадь многоугольника, - число клеток, которые целиком лежат внутри многоугольника, и - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать ниже только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги - в таких, где пересекаются линии сетки. Оказывается, что для таких многоугольников можно указать такую формулу:

где - площадь, r - число узлов, которые лежат строго внутри многоугольника.

Эту формулу называют «формула Пика» - по имени математика, открывшего её в 1899 году.

Простые треугольники

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Проделав это, например, для треугольников, изображённых на рисунке 1.34, можно убедиться, что площадь получается всегда равной «полученному» числу - числу вида, где - целое.

Назовём треугольник простым, если ни внутри него, ни на его сторонах нет узлов сетки, за исключением вершин. Все простые треугольники на рис. 1.34 имеют площадь. Мы увидим, что это не случайно.

Задача . Три кузнечика (три точки) в начальный момент времени сидят в трёх вершинах одной клетки, а затем начинают «играть в чехарду»: каждый может прыгнуть через одного из двух других, после чего оказывается в симметричной относительно его точке (рис. 1.35, ясно, что после любого числа таких прыжков кузнечики будут попадать в узлы клетчатой бумаги). В каких тройках точек могут через несколько прыжков оказаться кузнечики?

Назовём треугольник достижимым, если в его вершинах могут одновременно оказаться три кузнечика, которые вначале были в трёх вершинах одной клетки; прыжком будем называть преобразование треугольника, заключающееся в том, что одна из вершин переходит в точку, симметричную относительно любой из двух других вершин (эти две вершины остаются на месте).

Теорема 1 . Следующие три свойства треугольников с вершинами в узлах клетчатой бумаги эквивалентны друг другу:

1) треугольник имеет площадь,

2) треугольник прост,

3) треугольник достижим.

Познакомимся со следующими свойствами простого треугольника, которые и приводят к справедливости данной теоремы.

1. Площадь треугольника при прыжке не меняется.

2. Любой достижимый треугольник имеет площадь.

3. Если достроить простой треугольник АВС до параллелограмма ABCD , то ни внутри, ни на сторонах этого параллелограмма не будет узлов (не считая вершин).

4. Из простого треугольника при прыжке получается простой.

5. Из простого треугольника один из углов - тупой или прямой (причём последний случай возможен только для треугольника, у которого три вершины принадлежат одной клетке, такой простой треугольник - со сторонами 1, 1, будем называть минимальным.)

6. Из любого простого не минимального треугольника можно одним прыжком получить треугольник, у которого наибольшая сторона меньше, чем наибольшая сторона исходного.

7. Любой простой треугольник можно конечным числом прыжков перевести в минимальный.

8. Любой простой треугольник достижим.

9. Любой простой треугольник имеет площадь.

10. Любой треугольник можно разрезать на простые.

11. Площадь любого треугольника равна, причём при любом разрезании его на простые их количество равно m .

12. Любой треугольник площади - простой.

13. Для любых двух узлов А и В решётки, на отрезке между которыми нет других узлов, найдётся узел С такой, что треугольник АВС - простой.

14. Узел С в предыдущем свойстве можно всегда выбрать так, что угол АСВ будет тупым или прямым.

15. Пусть клетчатая плоскость разрезана на равные параллелограммы так, что все узлы являются вершинами параллелограммов. Тогда каждый из треугольников, на которые один из этих параллелограммов разрезается своей диагональю - простой.

16. (Обратное 15). Треугольник АВС - простой тогда и только тогда, когда всевозможные треугольники, полученные из АВС параллельными переносами, переводящими узел А в различные узлы решётки, не накладываются друг на друга.

17. Если решётку - узлы клетчатой бумаги - разбить на четыре подрешётки с клетками (рис. 1.36), то вершины простого треугольника обязательно попадут в три разные подрешётки (все три имеют разные обозначения).

Следующие два свойства дают ответ к задаче о трёх кузнечиках.

18. Три кузнечика могут одновременно попасть в те и только те тройки точек, которые служат вершинами простого треугольника и имеют тот же знак, что и соответствующие вершины начального треугольника.

19. Два кузнечика могут одновременно попасть в те и только те пары узлов соответствующих знаков, на отрезке между которыми нет других узлов.

Триангуляция многоугольника

Мы рассмотрим частный вид многоугольников на клетчатой бумаге, которому в формуле Пика соответствуют значения. Но от этого частного случая можно перейти сразу к самому общему, воспользовавшись теоремой о разрезании на треугольники произвольного многоугольника (клетчатая бумага больше не нужна).

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n - 2 (это разбиение - триангуляция с вершинами в вершинах n -угольника).

б) Пусть на границе многоугольника отмечено r точек (включая все вершины), внутри - ещё i точек. Тогда существует триангуляция с вершинами в отмеченных точках, причём количество треугольников такой триангуляции будет равно.

Разумеется, а) - частный случай б), когда.

Справедливость этой теоремы следует из следующих утверждений.

1) Из вершины наибольшего угла n -угольника () всегда можно провести диагональ, целиком лежащую внутри многоугольника.

2) Если n -угольник разрезан диагональю на р -угольник и q -угольник, то.

3) Сумма углов n -угольника равна.

4) Любой n -угольник можно разрезать диагоналями на треугольника.

5) Для любого треугольника, внутри и на границе которого отмечены несколько точек (в том числе и все три его вершины), существует триангуляция с вершинами в отмеченных точках.

6) То же самое верно и для любого n -угольника.

7) Число треугольников триангуляции равно, где i и r - количество отмечены несколько точек соответственно внутри и на границе многоугольника. Назовём разбиение n -угольника на несколько многоугольников правильным, если каждая вершина одного из многоугольников разбиения служит вершиной всех других многоугольников разбиения, которым она принадлежит. 8) Если из вершин k -угольников, на которые разбит правильным образом n -угольник, i вершин лежат внутри и r - на границе n -угольника, то количество k -угольников равно

9) Если точек плоскости и отрезков с концами в этих точках образуют многоугольник, правильно разбитый на многоугольников, то (рис. 1.38)

Из теорем 1 и 2 и вытекает формула Пика:

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

Теорема . Сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе этого треугольника.Доказательство. Пусть АВС (рис. 1.39) - прямоугольный треугольник, а BDEA , AFGE и BCKH - квадраты, построенные на его катетах и гипотенузе; требуется доказать, что сумма площадей двух первых квадратов равна площади третьего квадрата.

Проведём ВС . Тогда квадрат BCKH разделится на два прямоугольника. Докажем, что прямоугольник BLMH равновелик квадрату BDEA , а прямоугольник LCKM равновелик квадрату AFGC .

Проведём вспомогательные прямые DC и АН . Рассмотрим треугольники DCB и ABH . Треугольник DCB , имеющий основание BD , общее с квадратом BDEA , а высоту СN , равную высоте АВ этого квадрата, равновелик половине квадрата. Треугольник АВН , имеющий основание ВН , общее с прямоугольником BLMH , и высоту АР , равную высоте BL этого прямоугольника, равновелик его половине. Сравнивая эти два треугольника между собой, находим, что у них BD = ВА и ВС = ВН (как стороны квадрата);

Сверх того, DCB = АВН , т. к. каждый из этих углов состоит из общей части - АВС и прямого угла. Значит, треугольники АВН и ВСD равны. Отсюда следует, что прямоугольник BLMN равновелик квадрату BDEA . Точно также доказывается, что прямоугольник LGKM равновелик квадрату AFGC . Отсюда следует, что квадрат ВСКН равновелик сумме квадратов BDEA и AFGC .

Введение
Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» учителем были предложены задачи на нахождение площади многоугольника на клетчатой бумаге. Возникли вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно - измерительных материалах ОГЭ и ЕГЭ, решил обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры. Оказывается, задачи на клетчатой бумаге являются обширным классом математических задач. Решения таких задач оригинальны, красивы и часто решаются проще и быстрее, чем аналитическим путем. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научился вычислять площади многоугольников, нарисованных на клетчатом листке.
Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.
Так и была определена тема для исследования.

Объект исследования: формула Пика.

Предмет исследования: применение формулы Пика при решении задач, на нахождение площади фигур, изображённых на клетчатой бумаге.

Цель исследования
1. Изучение формулы Пика.
2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:
1.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
2.Проанализировать и систематизировать полученную информацию
3.Создать презентацию работы для представления собранного материала одноклассникам
4.Сделать выводы по результатам работы.
5.Подобрать наиболее интересные, наглядные примеры.

Методы исследования:
1. Моделирование.
2. Построение.
3. Анализ и классификация информации.
4. Сравнение, обобщение.
5. Изучение литературных и Интернет-ресурсов

Гипотеза: Вычисление площади фигуры по формуле Пика обеспечит правильное и быстрое решение задачи по сравнению с вычислением площади фигуры по формулам планиметрии.

Исследование формулы Пика.
Формула Пика. Решетки. Узлы.

При решении задач на клетчатой бумаге необходимы понятия решетки и узла.
Клетчатая бумага (точнее — ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости.
Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты (Рис. 1). Любой из этих квадратов называется фундаментальным квадратом или квадратом, порождающим решетку. Множество всех точек
Рис. 1. пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки - узлами решетки.
Чтобы оценить площадь многоугольника на клетчатой бумаге (Рис.1), достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки принимаем за единицу).
А также, площадь любого многоугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Чтобы вычислить площадь многоугольника, изображенного на рисунке, необходимо достроить его до прямоугольника ABCD, вычислить площадь прямоугольника ABCD, найти площадь заштрихованной фигуры как сумму площадей треугольников и прямоугольников её составляющих, вычесть её из площади прямоугольника. И хотя многоугольник и выглядит достаточно просто, для вычисления его площади нам придется потрудиться. А если бы многоугольник выглядел более причудливо, как на следующих рисунках?

Оказывается, площади многоугольников, вершины которых расположены в узлах решетки, можно вычислять гораздо проще: есть формула, связывающая их площадь с количеством узлов, лежащих внутри и на границе многоугольника. Эта замечательная и простая формула называется формулой Пика: S = В + Г/2 - 1, где S - площадь многоугольника, В - число узлов решетки, расположенных строго внутри многоугольника, Г - число узлов решетки, расположенных на его границе, включая вершины. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах решетки.
Но рассмотренный выше вывод формулы был без доказательства, не отвечал на вопрос: Почему? Вместе с учителем мы рассмотрели много литературы по данной проблеме.
В книге В.В.Вавилова, А.В.Устинова «Многоугольники на решетках» нам наконец удалось найти понравившееся нам доказательство формулы через сумму углов.

Доказательство формулы Пика.
Пусть В - число узлов решетки, расположенных строго внутри многоугольника, Г - число узлов решетки, расположенных на его границе, включая вершины, — его площадь. Тогда справедлива формула Пика: S=В+Г/2-1.
Пример 1. Вычислить площадь многоугольника, изображенного на клетчатой бумаге по формуле Пика.
S = В + Г/ 2 - 1
В = 14, Г = 8, S = 14 + 8/2 -1= 17 (кв.ед.)

Покажу справедливость формулы Пика. Сначала заметим, что формула Пика верна для единичного квадрата.
Действительно, в этом случае имеем: В=0, Г=4 иS=0+4/2-1=1.

Фундаментальный квадрат порождает решетку, то есть решетку можно построить следующим образом. Отметим вершины квадрата. Затем сдвинем его параллельно одной из его сторон на длину этой стороны и отметим две вновь полученные вершины. Если этот процесс продолжать сначала в одном направлении до длины a, а затем полученную полоску сдвинем параллельно себе в направлении другой стороны квадрата на длину этой стороны до длины b, то получим решетку.

Причем, число узлов решетки, лежащих внутри решетки, В = (а-1)(b-1), а число узлов решетки, расположенных на его границе, Г = 2a + 2b.
Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и. Имеем в этом случае, В=(а-1)(b-1), Г=2a+2b, тогда по формуле Пика S= (a -1)(b-1) +(2a+2b)/2 -1 = ab-a-b+1+a+b-1=ab. Получили формулу площади прямоугольника со сторонами a, b.
Рассмотрим теперь прямоугольный треугольник с катетами a и b. Такой треугольник получается из прямоугольника со сторонами a и b, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат c целочисленных точек. Тогда для этого случая, В= ((а-1)(b-1)-c+2 ,)/2 Г=(2a+2b)/2+с-1 и получаем, что S = ((a-1)(b-1)-c+2)/2 + (a+b+c-1)/2 -1 = ab/2- a/2 - b/2 - c/2 + 3/2 +a/2 + b/2 + c/2 - 1/2 - 1 = ab/2. Таким образом, получили формулу для вычисления площади прямоугольного треугольника. Значит, формула Пика верна для прямоугольного треугольника.
Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (Рис.2). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Кто же такой Георг Александер Пик?
Австрийский математик Георг Александер Пик родился 10 августа 1859 году в Вене. Его отец, будучи руководителем частного института, предпочел до 11 лет обучать мальчика на дому, а потом отдал его сразу в четвертый класс гимназии, которую он окончил в 1875 году.
В 16 лет Георг поступил в Венский университет. В 20 лет получил право преподавать физику и математику. 16 апреля 1880 года под руководством Лео Кёнигсбергера Пик защитил докторскую диссертацию «О классе абелевых интегралов». В 1881 году он получил место ассистента у Эрнста Маха, который занял кафедру физики в Пражском университете. Чтобы получить право чтения лекций, Георгу необходимо было пройти хабилитацию. Для этого он написал работу «Об интеграции гиперэллиптических дифференциалов логарифмами». Это произошло в 1882 году, вскоре после разделения Пражского университета на чешский (Карлов университет) и немецкий (Университет Карла-Фердинанда). Пик остался в Немецком университете. В 1884 году Пик уехал в Лейпцигский университет к Феликсу Клейну. Там он познакомился с другим учеником Клейна, Давидом Гильбертом. Позже, в 1885 г., он вернулся в Прагу, где и прошла оставшаяся часть его научной карьеры. Преподавательская деятельность в Немецком университете в Праге в 1888 г. Пик получил место экстраординарного профессора математики, затем в 1892г. стал ординарным профессором. В 1910 г. Георг Пик был в комитете, созданном Немецким университетом Праги для рассмотрения вопроса о принятии Альберта Эйнштейна профессором в университет. Пик и физик Антон Лампа были главными инициаторами этого назначения, и благодаря их усилиям Эйнштейн, с которым Пик впоследствии сдружился, в 1911г. возглавил кафедру теоретической физики в Немецком университете в Праге. Круг математических интересов Пика был чрезвычайно широк. В частности, им написаны работы в области функционального анализа и дифференциальной геометрии, эллиптических и абелевых функций, теории дифференциальных уравнений и комплексного анализа, всего более 50 тем. С его именем связаны матрица Пика, интерполяция Пика - Неванлинны, лемма Шварца-Пика.
Среди всего многообразия достижений австрийского математика выделяется формула для вычисления площадей многоугольников с вершинами в узлах клетки открытая им в 1899 году. Она стала широко известна только в 1969 году,после того, как Гуго Штейнгауз включил ее в свою знаменитую книгу «Математический калейдоскоп».В Германии эта теорема включена в школьные учебники.
После выхода в 1927 году на пенсию Пик вернулся в свой родной город Вену. Однако после аншлюса (присоединение) 12 марта 1938 года Австрии с Германией ему снова пришлось перебраться в Прагу. В сентябре 1938 года фашистская Германия вторглась на территорию Чехословакии. Г.А.Пик был брошен в концентрационный лагерь в Терзинштадте, где и умер две недели спустя.

Применение формулы Пика.
Задачи из КИМов ОГЭ и ЕГЭ.

Данный вид задач входит в один из разделов части В единого государственного экзамена по математике.
Ознакомление с формулой Пика особенно актуально накануне сдачи ЕГЭ и ОГЭ. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, — это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»! Формула Пика — это настоящее спасение для тех учеников, которые так и не смогли выучить все формулы для вычисления площадей фигур, для тех, кто так и не уяснил до конца, как выполнить разбиение фигуры или дополнительное построение, чтобы подобраться к вычислению её площади «через знакомых». С другой стороны, для тех, кто площадь многоугольника, изображённого на клетчатой бумаге, умеет находить с помощью вышеперечисленных приёмов, формула Пика послужит дополнительным инструментом, с помощью которого можно будет решить задачу ещё и этим способом (и тем самым проверить правильность своего предыдущего решения, сверив полученные ответы).

Исследование площадей многоугольников, изображенных на клетчатой бумаге.
Найдите площадь окрашенной фигуры, изображенной на чертеже. Размер каждой клетки равен 1см * 1см. Ответ дайте в квадратных сантиметрах.
Задача 1.
Дано:
Г=10, В=27.
Решение:S=27+10:2-1=31(кв. ед.)
Ответ: 31 кв.ед.

Задача 2.
Дано:
Г=3, В=0.
Решение: S=0+3:2-1=1 (кв. ед)
Ответ: 1 кв. ед.

Задача 3.
Дано:
Г=4, В=0.
Решение: S=0+4:2-1=1 (кв.ед.)
Ответ: 1 кв.ед.

Задача 4.
Дано:
Г=6, В=3.
Решение: S=3+6:2-1=5(кв.ед.)
Ответ: 5 кв.ед.

Задача 5.
Дано:
Г=6, В=16.
Решение:S=16+6:2-1=17(кв.ед.)
Ответ: 17 кв.ед.

Задача 6: Найти площадь «ракеты».
Дано:
Г=20, В=25.
Решение:S=25+20:2-1=34 (кв.ед.)
Ответ: 34 кв.ед.

Задача 7: Найти площадь кувшина.
Дано:
Г=6, В=14.
Решение:S=14+6:2-1=16 (кв.ед.)
Ответ: 16 кв.ед.

Задача 8: Найти площадь «плачущего сердца».
Дано:
Г=10, В=4.
Решение:S=4+10:2-1=8(кв.ед.)
Ответ: 8 кв.ед.

Задача 9.
Дано:
Г-9, В=11.
Решение:S= 11+9:2-1=14,5(кв.ед.)
Ответ: 14,5 кв.ед.

Задача 10.
Дано:
Г=26, В=32.
Решение:S=32+26:2-1=44 (кв.ед.)
Ответ: 44 кв.ед.

Задача 11.
Дано:
Г=16, В=27.
Решение: S=27+16:2-1=34(кв.ед.)
Ответ: 34 кв.ед.

Задача 12.
Дано:
Г=26, В=32.
Решение:S=32+26:2-1=44(кв.ед.)
Ответ: 44 кв.ед.

Задача 13.
Дано:
Г=22, В=30.
Решение:S=30+22:2-1=40 (кв.ед.)
Ответ: 40 кв.ед.

Задача 14.
Дано:
Г=28, В=52.
Решение:S=52+28:2-1=65 (кв.ед.)
Ответ: 65 кв.ед.

Задача 15.
Шахматный король обошел доску 8*8 клеток, побывав на каждом поле ровно один раз и последним ходом вернувшись на исходное поле. Ломаная, соединяющая последовательно центры полей, которые проходил король, не имеет самопересечений. Какую площадь может ограничивать эта ломаная? (Сторона клетки равна 1.)
Из формулы Пика сразу следует, что площадь, ограниченная ломаной, равна 64/2 - 1 = 31; здесь узлами решетки служат центры 64 полей и, по условию, все они лежат на границе многоугольника. Таким образом, хотя таких траекторий короля достаточно много, но все они ограничивают многоугольники равных площадей.
Ответ: 31

Задача 16.
Середины сторон квадрата соединены отрезками с вершинами. Найти площадь восьмиугольника и отношение площади квадрата к площади восьмиугольника, образованного проведенными отрезками.
Так как нужно найти отношение площадей, то размеры квадрата роли не играют. Поэтому рассмотрю квадрат, расположенный на целочисленной решетке, размером 12*12; стороны квадрата лежат в узлах клеточек. Тогда, нетрудно заметить, все вершины восьмиугольника являются узлами решетки; более того, отсюда легко заметить, что этот восьмиугольник правильным не является— он равносторонний, но не равноугольный. Из формулы Пика теперь легко следует, что площадь восьмиугольника равна
S=21 + 8/2 - 1 = 24 кв.ед. Площадь квадрата равна 122 =144 кв.ед. Поэтому искомое отношение площадей равно 6.
Ответ:24 кв.ед., 6.

Задача 17:Вычислить площадь многоугольника.
Дано:
В=33, Г=28.
Решение: S=33+28:2-1=46 (кв.ед.)
Ответ. 46 кв.ед.

Задача 18: Вычислить площадь многоугольника.
Дано:
В=117, Г= 68.
Решение:S=117+68:2-1=150 (кв.ед.)
Ответ:150 кв.ед.

Игры на клетчатой бумаге.
1. Окружение
Правила игры:
Поединок ведется на листке бумаги. Размеры и форма поля могут быть разными, минимальный размер поля - 12 х12 клеток.
Ходы делаются поочередно карандашом разного цвета. Сделать ход - значит поставить точку своего цвета в любой свободный узел поля.
Цель игры - окружить (взять в плен) своими точками как можно больше точек соперника.
Точка считается окруженной, если все соседние с ней по вертикали и горизонтали узлы заняты точками соперника. В ходе игры в окружение попадают как отдельные точки, так и целые группы. Окруженные точки обводятся линией, проходящей через все окружившие их точки соперника.
Может возникнуть ситуация, группа точек, пленившая какое-то количество точек противника, сама попадает в окружение. В этом случае «первичные» пленники считаются освобожденными.
Игра заканчивается, когда следующие ходы уже не могут привести к окружению никаких новых точек. Победителем становится тот, кто окружил больше точек.

Точки
Правила игры:
Отметьте на листке несколько точек (не меньше 8). Играют двое, поочередно соединяя любые две точки отрезком. Захватывать какую- либо третью точку нельзя. Каждая точка может быть концом только одного отрезка. Линии не должны пересекаться. Проигрывает тот, кто не сможет сделать очередного хода.

Эксперимент и исследование
Мы решили провести эксперимент для того, чтобы выяснить какой из рассмотренных способов является самым эффективным (безошибочным и малозатратным по времени).
Обучающимся8-11 классов мы напомнили и объяснили способы нахождения площадей фигур на клетчатой бумаге. Ученики решали задачи с помощью формул для нахождения площадей. Каждому нужно было решить 5 задачи и засечь время их выполнения.
Затем мы рассказывали им о формуле Пика, показали на примерах её применение и предложили решить те же задачи, но по формуле Пика (снова засекали время).
Результаты эксперимента представлены в таблице.
Общие результаты эксперимента:
Затраченное время - среднее значение (мин) Количество уч-ся, допустивших ошибки Безошибочных работ

T1 T2 О1 О2 Э1 Э2
8 класс
(20 учеников) 6,8 3,5 13 4 11 16
9 класс
(12 учеников) 6,6 3,7 13 6 5 7
10 - 11 класс
(7 человек) 4,7 2,4 2 0 5 0
Всего
(39 учеников) 6,3 3,4 28 10 21 23

Проведенный эксперимент показал, что:
никто из учеников не знал формулу Пика;
28 из 39 учащихся допустили ошибки при решении задач известными способами;
10 из 39 учащихся допустили ошибки при решении задач, используя формулу Пика;
количество ошибок, допущенных при решении задач по формуле Пика, сократилось в 2 раза, а у 10 - 11 - классников почти 100 %;
количество безошибочных работ увеличилось в 2 раза, а у 10-11 - классников - в 9 раз;
время, затраченное на решение по формуле Пика, сократилось в 2 раза.
Результаты эксперимента:
Количество участвующих в эксперименте Затраченное время Количество ошибок
ИФ ФП О1 О2
1/8 6 4 2 1
2/8 6 3 0 0
3/8 7 4 0 0
4/8 6 3 0 0
5/8 6 3 0 0
6/8 4 2 0 0
7/8 9 3 2 1
8/8 6 4 1 0
9/8 6 3 0 0
10/8 9 2 0 0
11/8 4 3 1 0
12/8 5 3 2 1
13/8 6 3 0 0
14/8 9 2 0 0
15/8 10 5 1 0
16/8 5 6 2 1
17/8 8 6 1 0
18/8 10 5 0 0
19/8 7 3 1 0
20/8 6 3 0 0
21/9 6 3 1 0
22/9 7 4 2 1
23/9 8 4 2 1
24/9 6 3 0 0
25/9 9 5 2 1
26/9 9 5 3 2
27/9 6 3 0 0
28/9 5 3 0 0
29/9 7 4 2 1
30/9 5 3 0 0
31/9 5 3 0 0
32/9 6 4 1 0
33/10 5 3 0 0
34/10 4 2 0 0
35/10 6 3 1 0
36/10 4 2 0 0
37/10 6 3 1 0
38/11 4 2 0 0
39/11 4 2 0 0
Всего
(39 учеников)

ИФ - решение задач известными способами,
ФП - решение задач по формуле Пика.

Заключение
В процессе исследования я изучил много справочной, научно-популярной литературы, побывал на сайтах: малый Мехмат МГУ, ФИПИ, прочитал некоторые книги в электронном виде. Рассмотрел различные задачи на построение и вычисления, заданные на клетчатой бумаге, подобрал нестандартные задания. Эти задачи отличаются от обычных задач, изложенных в действующих учебниках и задачниках по математике.
Любители головоломок увлекаются решением задач на клетчатой бумаге, прежде всего потому, что универсального метода решения таких задач не существует, и каждый, кто берётся за их решение, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению, поскольку здесь не требуется глубокого знания геометрии.
Вместе с тем, задачи на клетчатой плоскости не являются несерьёзными или бесполезными, они не так уж и далеки от серьёзных математических задач.
В результате работы я расширил свои знания о решении задач на клетчатой бумаге, определил для себя классификацию исследуемых задач, убедился в их многообразии.
Рассмотренные задания имеют различный уровень трудности - от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Выполнила ученица МОУ СОШ №7 8 «А» класса Юношева Ксения Преподаватель: Бабина Наталья Алексеевна г. Сальск 2011 год «Формула Пика»

Цели работы: Выяснение существования иной, отличной от школьной программы, формулы нахождения площади решетчатого многоугольника. Области применения искомой формулы.

Введение. Математическое образование, получаемое в общеобразовательных школах, является важнейшим компонентом общего образования и общей культуры современного человека. На данном этапе, школьная система рассчитана на одиннадцатилетнее обучение. Всем учащимся в конце одиннадцатого класса предстоит сдавать Единый Государственный Экзамен, который покажет уровень знаний, полученный во время учебы в школе. Но школьная программа не всегда предоставляет самые рациональные способы решения каких-либо задач. Например, просматривая результаты ЕГЭ 2010 года видно, что многие ученики теряют баллы из-за задания В6. Я задалась целью, как же можно сэкономить время и правильно решить это задание.

Задание В6. На клетчатой бумаге с клетками размером 1 см на 1 см изображены фигуры(см. рисунок). Найдите их площади в квадратных сантиметрах.

Итак, чтобы все-таки решить это задание мне нужно применить формулы нахождения площади, которые мы изучаем в 8классе.Но на это уйдет очень много времени, а мне нужно ответить на поставленный вопрос как можно быстрее, ведь время на экзамене строго ограниченно. Поэтому, проведя исследования, я выяснила, что существует теорема Пика, которая в школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Историческая справка. Георг Александр Пик (10 августа, 1859 - 26 июля 1942) был австрийским математиком. Он умер в концлагере Терезин. Сегодня он известен из-за формулы Пика для определения площади решетки полигонов. Он опубликовал свою формулу в статье в 1899 году, она стала популярной, когда Хьюго Штейнгауз включил её в 1969 году в издание математических снимков. Пик учился в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско-Фердинандском университете в Праге. Он стал преподавателем там в 1881 году. Взяв отпуск в университете в 1884 году, стал работать с Феликсом Клейном в Лейпцигском университете. Он оставался в Праге до своей отставки в 1927 году, а за тем вернулся в Вену. Пик возглавлял комитет в(тогда) немецком университете Праги, который назначил Альберта Эйнштейна профессором кафедры математической физики в 1911 году. Пик был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги. После ухода на пенсию в 1927 году, Пик вернулся в Вену, город, где он родился. После аншлюса, когда нацисты вошли в Австрию 12 марта 1938 года, Пик вернулся в Прагу. В марте 1939 года нацисты вторглись в Чехословакию. Георг был отправлен в концентрационный лагерь Терезин 13 июля 1942. Он умер через две недели.

Теорема Пика. Теорема Пика - классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисленными вершинами равна сумме В + Г/2 – 1, где В есть количество целочисленных точек внутри многоугольника, а Г количество целочисленных точек на границе многоугольника.

Доказате льст во теоремы Пика. Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны 1/2, а, следовательно, площадь многоугольника равна половине их числа Т. Чтобы найти это число, обозначим через п число сторон многоугольника, через i - число узлов внутри его и через b - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна πТ. Теперь найдём эту сумму другим способом. Сумма углов с вершиной в любом внутреннем узле составляет 2 π , т. е. общая сумма таких углов равна 2 π i ; общая сумма углов при узлах на сторонах, но не в вершинах равна (b – n) π , а сумма углов при вершинах многоугольника - (п – 2) π . Таким образом, π Т = 2i π + (b – n) π + (n – 2) π , откуда получаем выражение для площади S многоугольника, известное как формула Пика. Например, на рисунке b = 9, i = 24, а следовательно, площадь многоугольника равна 27,5.

Применение. Итак, вернемся к заданию В6. Теперь, зная новую формулы, мы легко сможем найти площадь этого четырехугольника. Так как В – 5; Г – 14, то 5+14:2-1=11 (см в квадрате) Площадь данного четырехугольника равна 11 см в квадрате.

По той же формуле мы можем найти площадь треугольника. Так как В-14, Г-10,то 14+10:2-1=18 (см в квадрате) Площадь данного треугольника равна 18 см в квадрате.

Если В-9, Г-12, тогда: 9+12:2-1=14 (см в квадрате) Площадь данного четырехугольника равна 14 см в квадрате.

Области применения формулы. Помимо того, что формула применяется в различного рода экзаменах, заданиях и так далее, она сопровождает весь окружающий нас мир.

По формуле Пика S =В + ½ Г-1 1)туловище В=9,Г=26, S=9+½·26-1=9+13-1= 21 2) хвост В=0,Г=8, S= 0 +½· 8 -1= 3 3) S= 21+3=24

По формуле Пика S =В + ½ Г-1 В=36, Г=21 S = 36 + ½· 21 -1=36+10,5-1=45,5

Заключение. В итоге, я пришла к выводу, что существует много различных способов решения задач на нахождение площади, не изучаемых в школьной программе, и показала их на примере формулы Пика.

Справочник. Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат). Точка координатной плоскости называется целочисленной, если обе её координаты целые.