Т. n-p-переход. P-N-переход и диод

Электронно-дырочный переход (сокращенно n-р-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором справа находится область полупроводника с дырочной, а слева - с электронной проводимостью (рис. 1). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора.

Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

Диффузия основных носителей через переход создает электрический ток I осн, направленный из р-области в n-область.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью \(~\vec E_i\). Это поле препятствует дальнейшей диффузии основных носителей: электронов из n-области и дырок из р-области.

Необходимо заметить, что в n-области наряду с электронами имеются неосновные носители - дырки, а в р-области - электроны. В полупроводнике непрерывно происходят процессы рождения и рекомбинации пар. Интенсивность этого процесса зависит только от температуры и одинакова во всем объеме полупроводника. Предположим, что в n-области возникла пара "электрон-дырка". Дырка будет хаотически перемещаться по η области до тех пор, пока не рекомбинирует с каким-либо электроном. Однако если пара возникает достаточно близко к переходу, то прежде, чем произойдет рекомбинация, дырка может оказаться в области, где существует электрическое поле, и под его действием она перейдет в р-область, т.е. электрическое поле перехода способствует переходу неосновных носителей в соседнюю область. Соответственно, создаваемый ими ток I неосн мал. так как неосновных носителей мало.

Таким образом, возникновение электрического поля \(~\vec E_i\) приводит к появлению неосновного тока I неосн. Накопление зарядов около перехода за счет диффузии и увеличение \(~\vec E_i\) будут продолжаться до тех пор, пока ток I неосн не уравновесит ток I осн (I неосн = I осн) и результирующий ток через электронно-дырочный переход станет равным нулю.

Если к n-р-переходу приложить разность потенциалов, то внешнее электрическое поле \(~\vec E_{ist}\) складывается с полем \(~\vec E_i\) . Результирующее поле, существующее в области перехода, \(~\vec E = \vec E_{ist} + \vec E_i\). Токи I осн и I неосн совершенно различно ведут себя по отношению к изменению поля в переходе, I неосн с изменением поля очень слабо изменяется, так как он обусловлен количеством неосновных носителей, а оно в свою очередь зависит только от температуры.

I осн (диффузия основных носителей) очень чувствителен к полю напряженностью \(~\vec E\). I осн быстро увеличивается с ее уменьшением и быстро падает при увеличении.

Пусть клемма источника тока соединена с n-областью. а "-" - с р-областью (обратное включение (рис. 2, а)). Суммарное поле в переходе усиливается: E > E ist и основной ток уменьшается. Если \(~\vec E\) достаточно велика, то I осн << I неосн и ток через переход создается неосновными носителями. Сопротивление n-р-перехода велико, ток мал.

Если включить источник так, чтобы область n-типа оказалась подключена к а область р-типа к (рис. 2, б), то внешнее поле будет направлено навстречу \(~\vec E_i\), и \(~\vec E = \vec E_i + \vec E_{ist} \Rightarrow E = E_i - E_{ist} < E_i\), т.е. поле в переходе ослабляется. Поток основных носителей через переход резко увеличивается, т.е. I осн резко возрастает.

p-n -перехо́д (n - negative - отрицательный, электронный, p - positive - положительный, дырочный), или электронно-дырочный переход - разновидность гомопереходов , Зоной p-n перехода называется область полупроводника , в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p .

Электронно-дырочный переход может быть создан различными путями:

  1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n -область), а в другой - акцепторной (p -область);
  2. на границе двух различных полупроводников с разными типами проводимости.

Если p-n -переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n - к р -области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.

Энергетическая диаграмма p-n -перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении

При контакте двух областей n - и p - типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p -области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n -области - нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле , направленное от n -области к p -области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт - устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n - и p -областями при этом существует разность потенциалов , называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p -области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p -области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p - n -переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p - и n -областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p -области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p-n -переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n -переход течёт ток I s (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p-n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 10 5 - 10 6 раз. Благодаря этому p-n -переход может использоваться для выпрямления переменных токов (диод).

Вольт-амперная характеристика

Чтобы вывести зависимость величины тока через p-n -переход от внешнего смещающего напряжения V , мы должны рассмотреть отдельно электронные и дырочные токи . В дальнейшем будем обозначать символом J плотность потока частиц, а символом j - плотность электрического тока ; тогда j e = −eJ e , j h = eJ h .

Вольт-амперная характеристика p-n -перехода. I s - ток насыщения, U пр - напряжение пробоя.

При V = 0 как J e , так и J h обращаются в нуль. Это означает, конечно, не отсутствие движения отдельных носителей через переход, а только то, что в обоих направлениях движутся равные количества электронов (или дырок). При V ≠ 0 баланс нарушается. Рассмотрим, например, дырочный ток через обеднённый слой. Он включает следующие две компоненты:

  1. Ток генерации n -области в p -область перехода. Как видно из названия, этот ток обусловлен дырками, генерируемыми непосредственно в n -области обеднённого слоя при тепловом возбуждении электронов с уровней валентной зоны. Хотя концентрация таких дырок (неосновных носителей) в n -области чрезвычайно мала по сравнению с концентрацией электронов (основных носителей), они играют важную роль в переносе тока через переход. Это происходит потому, что каждая дырка, попадающая в обеднённый слой, тут же перебрасывается в p -область под действием сильного электрического поля, которое имеется внутри слоя. В результате величина возникающего тока генерации не зависит от значения изменения потенциала в обеднённом слое, поскольку любая дырка, оказавшаяся в слое, перебрасывается из n -области в p -область.
  2. Ток рекомбинации , то есть дырочный ток, текущий из p -области в n -область. Электрическое поле в обеднённом слое препятствует этому току, и только те дырки, которые попадают на границу обеднённого слоя, имея достаточную кинетическую энергию , чтобы преодолеть потенциальный барьер, вносят вклад в ток рекомбинации. Число таких дырок пропорционально e −eΔФ/kT и, следовательно,

В отличие от тока генерации, ток рекомбинации чрезвычайно чувствителен к величине приложенного напряжения V . Мы можем сравнить величины этих двух токов, заметив, что при V = 0 суммарный ток через переход отсутствует: J h rec (V = 0) = J h gen Из этого следует, что J h rec = J h gen e eV/kT . Полный дырочный ток, текущий из p -области в n -область, представляет собой разность между токами рекомбинации и генерации:

J h = J h rec − J h gen = J h gen (e eV/kT − 1).

Аналогичное рассмотрение применимо к компонентам электронного тока с тем только изменением, что токи генерации и рекомбинации электронов направлены противоположно соответствующим дырочным токам. Поскольку электроны имеют противоположный заряд, электрические токи генерации и рекомбинации электронов совпадают по направлению с электрическими токами генерации и рекомбинации дырок. Поэтому полная плотность электрического тока есть j = e (J h gen + J e gen )(e eV/kT − 1).

Ёмкость p-n -перехода и частотные характеристики

p-n -переход можно рассматривать как плоский конденсатор , обкладками которого служат области n - и p -типа вне перехода, а изолятором является область объемного заряда, обеднённая носителями заряда и имеющая большое сопротивление. Такая ёмкость называется барьерной . Она зависит от внешнего приложенного напряжения, поскольку внешнее напряжение меняет пространственный заряд. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между n - и p -областями полупроводника, и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды неподвижны и связаны с ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением электрической ёмкости перехода. В зависимости от площади перехода, концентрации легирующей примеси и обратного напряжения барьерная емкость может принимать значения от единиц до сотен пикофарад . Барьерная ёмкость проявляется при обратном напряжении; при прямом напряжении она шунтируется малым сопротивлением p-n -перехода. За счёт барьерной ёмкости работают варикапы .

Кроме барьерной ёмкости p-n -переход обладает так называемой диффузионной ёмкостью . Диффузионная ёмкость связана с процессами накопления и рассасывания неравновесного заряда в базе и характеризует инерционность движения неравновесных зарядов в области базы. Диффузионная ёмкость обусловлена тем, что увеличение напряжения на p-n -переходе приводит к увеличению концентрации основных и неосновных носителей, то есть к изменению заряда. Величина диффузионной ёмкости пропорциональна току через p-n -переход. При подаче прямого смещения значение диффузионной ёмкости может достигать десятков тысяч пикофарад.

Эквивалентная схема p-n -перехода. C б - барьерная ёмкость, C д - диффузионная ёмкость, R a - дифференциальное сопротивление p-n -перехода, r - объёмное сопротивление базы.

Суммарная ёмкость p-n -перехода определяется суммой барьерной и диффузионной ёмкостей. Эквивалентная схема p-n -перехода на переменном токе представлена на рисунке. На эквивалентной схеме параллельно дифференциальному сопротивлению p-n -перехода R а включены диффузионная ёмкость C д и барьерная ёмкость С б; последовательно с ними включено объёмное сопротивление базы r . С ростом частоты переменного напряжения, поданного на p-n -переход, емкостные свойства проявляются все сильнее, R а шунтируется ёмкостным сопротивлением, и общее сопротивление p-n -перехода определяется объёмным сопротивлением базы. Таким образом, на высоких частотах p-n -переход теряет свои линейные свойства.

Пробой p-n -перехода

Пробой диода - это явление резкого увеличения обратного тока через диод при достижении обратным напряжением некоторого критического для данного диода значения. В зависимости от физических явлений, приводящих к пробою, различают лавинный, туннельный, поверхностный и тепловой пробои.

  • Лавинный пробой (ударная ионизация) является наиболее важным механизмом пробоя p-n -перехода. Напряжение лавинного пробоя определяет верхний предел обратного напряжения большинства диодов. Пробой связан с образованием лавины носителей заряда под действием сильного электрического поля, при котором носители приобретают энергии, достаточные для образования новых электронно-дырочных пар в результате ударной ионизации атомов полупроводника.
  • Туннельным пробоем электронно-дырочного перехода называют электрический пробой перехода, вызванный квантовомеханическим туннелированием носителей заряда сквозь запрещённую зону полупроводника без изменения их энергии. Туннелирование электронов возможно при условии, если ширина потенциального барьера, который необходимо преодолеть электронам, достаточно мала. При одной и той же ширине запрещённой зоны (для одного и того же материала) ширина потенциального барьера определяется напряжённостью электрического поля, то есть наклоном энергетических уровней и зон. Следовательно, условия для туннелирования возникают только при определённой напряжённости электрического поля или при определённом напряжении на электронно-дырочном переходе - при пробивном напряжении. Значение этой критической напряжённости электрического поля составляет примерно 8∙10 5 В/см для кремниевых переходов и 3∙10 5 В/см - для германиевых. Так как вероятность туннелирования очень сильно зависит от напряжённости электрического поля, то внешне туннельный эффект проявляется как пробой диода.
  • Поверхностный пробой (ток утечки) . Реальные p-n -переходы имеют участки, выходящие на поверхность полупроводника. Вследствие возможного загрязнения и наличия поверхостных зарядов между p- и n- областями могут образовываться проводящие плёнки и проводящие каналы, по которым идёт ток утечки I ут. Этот ток увеличивается с ростом обратного напряжения и может превысить тепловой ток I 0 и ток генерации I ген. Ток I ут слабо зависит от температуры. Для уменьшения I ут применяют защитные плёночные покрытия.
  • Тепловой пробой - это пробой, развитие которого обусловлено выделением в выпрямляющем электрическом переходе тепла вследствие прохождения тока через переход. При подаче обратного напряжения практически всё оно падает на p-n -переходе, через который идёт, хотя и небольшой, обратный ток. Выделяющаяся мощность вызывает разогрев p-n -перехода и прилегающих к нему областей полупроводника. При недостаточном теплоотводе эта мощность вызывает дальнейшее увеличение тока, что приводит к пробою. Тепловой пробой, в отличие от предыдущих, необратим.

P-N переход - точка в полупроводниковом приборе, где материал N-типа и материал P-типа соприкасаются друг с другом. Материал N-типа обычно упоминается как катодная часть полупроводника, а материал P-типа - как анодная часть.

Когда между этими двумя материалами возникает контакт, то электроны из материала n-типа перетекают в материал p-типа и соединяются с имеющимися в нем отверстиями. Небольшая область с каждой стороны линии физического соприкосновения этих материалов почти лишена электронов и отверстий. Эта область в полупроводниковом приборе называется обедненной областью.

Эта обедненная область является ключевым звеном в работе любого прибора, в котором есть P-N переход. Ширина этой обедненной области определяет сопротивление протеканию тока через P-N переход, поэтому сопротивление прибора, имеющего такой P-N переход, зависит от размеров этой обедненной области. Ее ширина может изменяться при прохождении какого-либо напряжения через этот P-N переход. В зависимости от полярности приложенного потенциала P-N переход может иметь либо прямое смещение, либо обратное смещение. Ширина обедненной области, или сопротивление полупроводникового прибора, зависит как от полярности, так и от величины поданного напряжения смещения.

Когда P-N переход прямой (с прямым смещением), то тогда на анод подается положительный потенциал, а на катод - отрицательный. Результатом этого процесса является сужение обедненной области, что уменьшает сопротивление движению тока через P-N переход.

Если потенциал увеличивается, то обедненная область будет продолжать уменьшаться, тем самым еще больше понижая сопротивление протеканию тока. В конце концов, если подаваемое напряжение окажется достаточно велико, то обедненная область сузится до точки минимального сопротивления и через P-N переход, а вместе с ним и через весь прибор, будет проходить максимальный ток. Когда P-N переход имеет соответствующее прямое смещение, то он обеспечивает минимальное сопротивление проходящему через него потоку тока.

Когда P-N переход обратный (с обратным смещением), то отрицательный потенциал подается на анод, а положительный - на катод.

Это приводит к тому, что в результате обедненная область расширяется, а это вызывает увеличение сопротивления протеканию тока. Когда на P-N переходе создается обратное смещение, то имеет место максимальное сопротивление протеканию тока, а данный переход действует в основном как разомкнутая цепь.

При определенном критическом значении напряжения обратного смещения сопротивление протеканию тока, которое возникает в обедненной области, оказывается преодоленным и происходит стремительное нарастание тока. Значение напряжения обратного смещения, при котором ток быстро нарастает, называется пробивным напряжением.

Подавляющее большинство современных полупроводниковых приборов функционируют благодаря тем явлениям, которые происходят на самих границах материалов, имеющих различные типы электропроводности.

Полупроводники бывают двух типов – n и p . Отличительной особенностью полупроводниковых материалов n -типа является то, в них в качестве носителей электрического заряда выступают отрицательно заряженные электроны . В полупроводниковых материалах p -типа эту же роль играют так называемые дырки , которые заряжены положительно. Они появляются после того, как от атома отрывается электрон , и именно поэтому и образуются положительный заряд.

Для изготовления полупроводниковых материалов n -типа и p -типа используются монокристаллы кремния. Их отличительной особенностью является чрезвычайно высокая степень химической чистоты. Существенно изменить электрофизические свойства этого материала можно, внося в него совсем незначительные, на первый взгляд, примеси.

Символ « n », используемый при обозначении полупроводников, происходит от слова «negative » («отрицательный »). Главными носителями заряда в полупроводниковых материалах n -типа являются электроны . Для того чтобы их получить, в кремний вводятся так называемые донорные примеси: мышьяк, сурьму, фосфор.

Символ « p », используемый при обозначении полупроводников, происходит от слова «positive » («положительный »). Главными носителями заряда в них являются дырки . Для того чтобы их получить, в кремний вводятся так называемые акцепторные примеси: бор, алюминий.

Число свободных электронов и число дырок в чистом кристалле полупроводника совершенно одинаково. Поэтому когда полупроводниковый прибор находится в равновесном состоянии, то электрически нейтральной является каждая из его областей.

Возьмем за исходное то, что n -область тесно соединена с p -областью. В таких случаях между ними образуется переходная зона, то есть некое пространство, которое обеднено зарядами. Его ёщё называют «запирающим слоем », где дырки и электроны , подвергаются рекомбинации. Таким образом, в месте соединения двух полупроводников, которые имеют различные типы проводимости, образуется зона, называемая p-n переходом .

В месте контакта полупроводников различных типов дырки из области p -типа частично следуют в область n -типа, а электроны, соответственно, – в обратном направлении. Поэтому полупроводник p -типа заряжается отрицательно, а n -типа – положительно. Эта диффузия, однако, длится только до тех пор, пока возникающее в зоне перехода электрическое поле не начинает ей препятствовать, в результате чего перемещение и электронов , и дырок прекращается.

В выпускаемых промышленностью полупроводниковых приборах для использования p-n перехода к нему необходимо приложить внешнее напряжение. В зависимости от того, какими будет его полярность и величина, зависит поведение перехода и проходящий непосредственно через него электрической ток. Если к p -области подключается положительный полюс источника тока, а к n -области – полюс отрицательный, то имеет место прямое включение p-n перехода . Если же полярность изменить, то возникнет ситуация, называемая обратным включением p-n перехода .

Прямое включение

Когда осуществляется прямое включение p-n перехода , то под воздействием внешнего напряжения в нем создается поле. Его направление по отношению к направлению внутреннего диффузионного электрического поля противоположно. В результате этого происходит падение напряженности результирующего поля, а запирающий слой сужается.

Вследствие такого процесса в соседнюю область переходит немалое количество основных носителей заряда. Это означает, что из области p в область n результирующий электрический ток будет протекать дырками , а в обратном направлении – электронами .

Обратное включение

Когда осуществляется обратное включение p-n перехода , то в образовавшейся цепи сила тока оказывается существенно ниже, чем при прямом включении. Дело в том, что дырки из области n будут следовать в область p , а электроны – из области p в область n . Невысокая сила тока обуславливается тем обстоятельством, что в области p мало электронов , а в области n, соответственно, – дырок .

Прямое и обратноевключение p-n перехода.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального

барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Свойства p-n перехода.

К основным свойствам p-n перехода относятся:

1, свойство односторонней проводимости;

2, температурные свойства p-n перехода;

3, частотные свойства p-n перехода;

4, пробой p-n перехода.

Свойство односторонней проводимости p-n перехода нетрудно рассмотреть на вольтамперной

характеристике. Вольтамперной характеристикой (ВАХ) называется графически выраженная

зависимость величины протекающего через p-n переход тока от величины приложенного

напряжения. I=f(U).При увеличении прямого напряжения прямой ток изменяется по экспоненциальному закону. Так как величина обратного тока во много раз меньше, чем прямого, то обратным током можно пренебречь и считать, что p-n переход проводит ток только в одну сторону.

Температурное свойство p-n перехода показывает, как изменяется работа p-n перехода при изменении температуры. На p-n переход в значительной степени влияет нагрев, в очень малой

степени – охлаждение. При увеличении температуры увеличивается термогенерация носителей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на негопеременного напряжения высокой частоты. Частотные свойства p-n перехода определяютсядвумя видами ёмкости перехода.Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорнойи акцепторной примеси. Она называется зарядной, или барьерной ёмкостью.Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

2. Биполярные транзисторы: устройство, принцип действия, схемы включения.

Биполярный транзистор - трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) - электронный тип примесной проводимости, p (positive) - дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» - «два»)

1. Устройство биполярных транзисторов. Основой биполярного транзистора является кристалл полупроводника p-типа или n-типа проводимости, который также как и вывод отнего называется базой.

Диффузией примеси или сплавлением с двух сторон от базы образуются области с противоположным типом проводимости, нежели база.

Область, имеющая бoльшую площадь p-n перехода, и вывод от неё называют коллектором. Область, имеющая меньшую площадь p-n перехода, и вывод от неё называют эмиттером. p-n переход между коллектором и базой называютколлекторным переходом, а между эмиттером и базой – эмиттерным переходом.

Направление стрелки в транзисторе показывает направление протекающего тока. Основнойособенностью устройства биполярных транзисторов является неравномерность концентрацииосновных носителей зарядов в эмиттере, базе и коллекторе. В эмиттере концентрация носителей заряда максимальная. Вколлекторе – несколько меньше, чем в эмиттере. В базе – вомного раз меньше, чем в эмиттере и коллекторе

2. Принципдействиябиполярныхтранзисторов. При работе транзистора в усилительном

режиме эмиттерный переход открыт, а коллекторный – закрыт. Это достигается соответствующим включением источников питания.Так как эмиттерный переход открыт, то через него будет протекать ток эмиттера, вызванный

переходом электронов из эмиттера в базу и переходом дырок из базы в эмиттер. Следователь-

но, ток эмиттера будет иметь две составляющие – электронную и дырочную.Инжекцией зарядов называется переход носителей зарядов из области, где они были основными в область, где они становятся неосновными. В базе электроны рекомбинируют, а их концентрация в базе пополняется от «+» источника Еэ, за счёт чего в цепи базы будет протекатьочень малый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под ускоряющим действием поля закрытого коллекторного перехода как неосновные носители будут переходить в коллектор, образуя ток коллектора. Переход носителей зарядов из области, где они

были не основными, в область, где они становятся основными, называется экстракцией зарядов.