Как находить значение производной функции в точке. Что такое производная

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.

{\large\bf Производная функции}

Рассмотрим функцию y=f(x) , заданную на интервале (a, b) . Пусть x - любое фиксированная точка интервала (a, b) , а Δx - произвольное число, такое, что значение x+Δx также принадлежит интервалу (a, b) . Это число Δx называют приращением аргумента.

Определение . Приращением функции y=f(x) в точке x , соответствующим приращению аргумента Δx , назовем число

Δy = f(x+Δx) - f(x) .

Считаем, что Δx ≠ 0 . Рассмотрим в данной фиксированной точке x отношение приращения функции в этой точке к соответствующему приращению аргумента Δx

Это отношение будем называть разностным отношением. Так как значение x мы считаем фиксированным, разностное отношение представляет собой функцию аргумента Δx . Эта функция определена для всех значений аргумента Δx , принадлежащих некоторой достаточно малой окрестности точки Δx=0 , за исключением самой точки Δx=0 . Таким образом, мы имеем право рассматривать вопрос о существовании предела указанной функции при Δx → 0 .

Определение . Производной функции y=f(x) в данной фиксированной точке x называется предел при Δx → 0 разностного отношения, то есть

При условии, что этот предел существует.

Обозначение . y′(x) или f′(x) .

Геометрический смысл производной : Производная от функции f(x) в данной точке x равна тангенсу угла между осью Ox и касательной к графику этой функции в соответствующей точке:

f′(x 0) = \tgα .

Механический смысл производной : Производная от пути по времени равна скорости прямолинейного движения точки:

Уравнение касательной к линии y=f(x) в точке M 0 (x 0 ,y 0) принимает вид

y-y 0 = f′(x 0) (x-x 0) .

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f′(x 0)≠ 0 , то уравнение нормали к линии y=f(x) в точке M 0 (x 0 ,y 0) записывается так:

Понятие дифференцируемости функции

Пусть функция y=f(x) определена на некотором интервале (a, b) , x - некоторое фиксированное значение аргумента из этого интервала, Δx - любое приращение аргумента, такое, что значение аргумента x+Δx ∈ (a, b) .

Определение . Функция y=f(x) называется дифференцируемой в данной точке x , если приращение Δy этой функции в точке x , соответствующее приращению аргумента Δx , может быть представимо в виде

Δy = A Δx +αΔx ,

где A - некоторое число, не зависящее от Δx , а α - функция аргумента Δx , являющая бесконечно малой при Δx→ 0 .

Так как произведение двух бесконечно малых функций αΔx является бесконечно малой более высокого порядка, чем Δx (свойство 3 бесконечно малых функций), то можем записать:

Δy = A Δx +o(Δx) .

Теорема . Для того, чтобы функция y=f(x) являлась дифференцируемой в данной точке x , необходимо и достаточно, чтобы она имела в этой точке конечную производную. При этом A=f′(x) , то есть

Δy = f′(x) Δx +o(Δx) .

Операцию нахождения производной обычно называют дифференцированием.

Теорема . Если функция y=f(x) x , то она непрерывна в этой точке.

Замечание . Из непрерывности функции y=f(x) в данной точке x , вообще говоря, не вытекает дифференцируемость функции f(x) в этой точке. Например, функция y=|x| - непрерывна в точке x=0 , но не имеет производной.

Понятие дифференциала функции

Определение . Дифференциалом функции y=f(x) называется произведение производной этой функции на приращение независимой переменной x :

dy = y′ Δx, df(x) = f′(x) Δx .

Для функции y=x получаем dy=dx=x′Δx = 1· Δx= Δx , то есть dx=Δx - дифференциал независимой переменной равен приращению этой переменной.

Таким образом, можем записать

dy = y′ dx, df(x) = f′(x) dx

Дифференциал dy и приращение Δy функции y=f(x) в данной точке x , оба отвечающие одному и тому же приращению аргумента Δx , вообще говоря, не равны друг другу.

Геометрический смысл дифференциала : Дифференциал функции равен приращению ординаты касательной к графику данной функции, когда аргумент получает приращение Δx .

Правила дифференцирования

Теорема . Если каждая из функций u(x) и v(x) дифференцируема в данной точке x , то сумма, разность, произведение и частное этих функций (частное при условии, что v(x)≠ 0 ) также дифференцируемы в этой точке, причем имеют место формулы:

Рассмотрим сложную функцию y=f(φ(x))≡ F(x) , где y=f(u) , u=φ(x) . В этом случае u называют промежуточным аргументом , x - независимой переменной .

Теорема . Если y=f(u) и u=φ(x) - дифференцируемые функции своих аргументов, то производная сложной функции y=f(φ(x)) существует и равна произведению этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной, т.е.

Замечание . Для сложной функции, являющейся суперпозицией трех функций y=F(f(φ(x))) , правило дифференцирования имеет вид

y′ x = y′ u u′ v v′ x ,

где функции v=φ(x) , u=f(v) и y=F(u) - дифференцируемые функции своих аргументов.

Теорема . Пусть функция y=f(x) возрастает (или убывает) и непрерывна в некоторой окрестности точки x 0 . Пусть, кроме того, эта функция дифференцируема в указанной точке x 0 и ее производная в этой точке f′(x 0) ≠ 0 . Тогда в некоторой окрестности соответствующей точки y 0 =f(x 0) определена обратная для y=f(x) функция x=f -1 (y) , причем указанная обратная функция дифференцируема в соответствующей точке y 0 =f(x 0) и для ее производной в этой точке y справедлива формула

Таблица производных

Инвариантность формы первого дифференциала

Рассмотрим дифференциал сложной функции. Если y=f(x) , x=φ(t) - дифференцируемы функции своих аргументов, то производная функции y=f(φ(t)) выражается формулой

y′ t = y′ x x′ t .

По определению dy=y′ t dt , тогда получим

dy = y′ t dt = y′ x · x′ t dt = y′ x (x′ t dt) = y′ x dx ,

dy = y′ x dx .

Итак, доказали,

Свойство инвариантности формы первого дифференциала функции : как в случае, когда аргумент x является независимой переменной, так и в случае, когда аргумент x сам является дифференцируемой функцией новой переменной, дифференциал dy функции y=f(x) равен производной этой функции, умноженной на дифференциал аргумента dx .

Применение дифференциала в приближенных вычислениях

Мы показали, что дифференциал dy функции y=f(x) , вообще говоря, не равен приращению Δy этой функции. Тем не менее с точностью до бесконечно малой функции более высокого порядка малости, чем Δx , справедливо приближенное равенство

Δy ≈ dy .

Отношение называют относительной погрешностью равенства этого равенства. Так как Δy-dy=o(Δx) , то относительная погрешность данного равенства становится как угодно малой при уменьшении |Δх| .

Учитывая, что Δy=f(x+δ x)-f(x) , dy=f′(x)Δx , получим f(x+δ x)-f(x) ≈ f′(x)Δx или

f(x+δ x) ≈ f(x) + f′(x)Δx .

Это приближенное равенство позволяет с ошибкой o(Δx) заменить функцию f(x) в малой окрестности точки x (т.е. для малых значений Δx ) линейной функцией аргумента Δx , стоящей в правой части.

Производные высших порядков

Определение . Второй производной (или производной второго порядка) функции y=f(x) называется производная от ее первой производной.

Обозначение второй производной функции y=f(x) :

Механический смысл второй производной . Если функция y=f(x) описывает закон движения материальной точки по прямой линии, то вторая производная f″(x) равна ускорению движущейся точки в момент времени x .

Аналогично определяется третья, четвертая производная.

Определение . n -й производной (или производной n -го порядка) функции y=f(x) называется производная от ее n-1 -й производной:

y (n) =(y (n-1))′, f (n) (x)=(f (n-1) (x))′ .

Обозначения: y″′ , y IV , y V и т.д.

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.