Сумма противоположных углов описанного четырехугольника равны. Вписанная и описанная окружности

Определение 1. Четырехугольником называется фигура, состоящая из четырех точек (вершины), никакие три из которых не лежат на одной прямой, и четырех последовательно соединяющих их непересекающихся отрезков (стороны).
Определение 2. Соседними называют вершины, которые являются концами одной стороны.
Определение 3. Вершины, не являющиеся соседними, называют противолежащими.
Определение 4. Отрезки, соединяющие противоположные вершины четырехугольника, называются его диагоналями.
Теорема 1. Сумма углов четырехугольника равна 360 о.
Действительно, поделив четырехугольник диагональю на два треугольника, получаем, что сумма его углов равна сумме углов этих двух треугольников. Зная, что сумма углов треугольника равна 180 о, получаем искомое: 2 * 180 о =360 о
Определение d1. Описанный четырёхугольник - это четырёхугольник, все стороны которого касаются некоторой окружности. Напомним, что понятие стороны, касающейся окружности: окружность считается касающейся данной стороны, если она касается прямой, содержащей эту сторону, и точка касания лежит на этой стороне.
Определение d2. Вписанный четырехугольник - это четырёхугольник, все вершины которого принадлежат некоторой окружности.
Теорема 2. У любого четырехугольника, вписанного в окружность, суммы пар противоположных углов равны 180 о.
Углы А и С оба опираются на дугу BD только с разных сторон, то есть охватывают всю окружность, а сама окружность - это дуга величиной в 360 о, но мы знаем теоремму, которая твердит, что величина вписанного угла равна половине угловой величины дуги, на которую он опирается, поэтому можем утвердить, что сумма этих углов (А и С в частности) равна 180 о. Тем же способом можно жоказать эту теорему и для другой пары углов.
Теорема 3. Если в четырехугольник можно вписать окружность, то суммы длин его противоположных сторон равны.
Для доказательства этой теоремы воспользуемся теоремой из темы круг и окружность , которая гласит: Отрезки касательных, проведенных из одной точки к окружности, равны, т.е. ВК=ВР, СР=СН, DH=DT и АТ=АК. Суммируем стороны АВ и CD: AB+CD=(AK+KB)+(DH+HC)=AT+BP+DT+CP=(AT+TD)+(BP+PC)=AD+BC, ч.т.д.

Для теорем 2 и 3 существуют обратные. Запишем их соответственно:

Теорема 4. Около четырехугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равны 180 градусам
Теорема 5. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин противоположных сторон равны.

Доказательство: Пусть ABCD - данный четырехугольник, и него AB + CD = AD + BC. Проведем биссектрисы его углов A и D. Эти биссектрисы непараллельны, а значит, пересекаются в некоторой точке O. Опустим из точки O на стороны AB, AD и CD перпендикуляры OK, OL и OM. Тогда OK=OL, и OL=OM, а значит, окружность с центром в точке O и радиусом OK касается сторон AB, AD и CD данного четырёхугольника. Проведём из точки B касательную к этой окружности. Пусть эта касательная пересекает прямую CD в точке P. Тогда ABPD - описанный четырёхугольник. Следовательно, по свойству описанного четырёхугольника, AB + DP = AD + BP. Также, по условию, AB+ CD = AD + BC. Следовательно, BP + PC = BC, а значит, по неравенству треугольника, точка P лежит на отрезке BC. Следовательно, прямые BP и BC совпадают, а значит, прямая BC касается окружности с центром в точке O, то есть ABCD - описанный четырёхугольник по определению. Теорема доказана.
Теорема 6. Площадь четырехугольника равна половине произведения его диагоналей и синуса угла между ними.

Доказательство: Пусть ABCD - данный четырёхугольник. Пусть также O - точка пересечения диагоналей. Тогда
S ABCD = S ABO + S BCO +S CDO + S DAO =
= 1/2(AO·BO·sin∠ AOB + BO·CO·sin∠ BOC +
+ CO·DO·sin∠ COD + DO·AO·sin∠ AOD) =
= 1/2·sin∠ BOC·(AO + CO)·(BO + DO) =
= 1/2·sin∠ BOC·AC·BD.
Теорема доказана.
Теорема d1. (Вариньона) Четырёхугольник с вершинами в серединах сторон любого четырёхугольника есть параллелограмм, причём площадь этого параллелограмма равна половине площади исходного четырёхугольника.

Доказательство: Пусть ABCD - данный четырёхугольник, а K, L, M и N - середины его сторон. Тогда KL - средняя линия треугольника ABC, а значит, KL параллельно AC. Также LM параллельно BD, MN параллельно AC, а NK параллельно BD. Следовательно, KL параллельно MN, LM параллельно KN. Значит, KLMN - параллелограмм. Площадь этого параллелограмма - KL·KN·sin∠ NKL =
1/2·AC·BD·sin∠ DOC = 1/2S ABCD .
Теорема доказана.

Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

Площадь

S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали

С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

Согласно второй теореме Птолемея ,

p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство

p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

(p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

Если M и N являются средними точками диагоналей AC и BD , то

M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

где E и F - точки пересечения противоположных сторон.

Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

Формулы углов

a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

Для угла θ между диагоналями выполняется

tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

Формула Парамешвара

Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

Другие свойства

  • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
  • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

Четырёхугольники Брахмагупты

Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

Свойства ортодиагональных вписанных четырёхугольников

Площадь и радиус описанной окружности

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D -

или, через стороны четырёхугольника

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

Литература

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. .
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
  • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
  • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6

1 . Сумма диагоналей выпуклого четырёхугольника больше суммы его двух противоположных сторон.

2 . Если отрезки, соединяющие середины противоположных сторон четырёхугольника

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

3 . Биссектрисы углов при боковой стороне трапеции пересекаются на её средней линии.

4 . Стороны параллелограмма равны и . Тогда четырёхугольник, образованный пересечениями биссектрис углов паралле­лограмма, является прямоугольником, диагонали которого равны .

5 . Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.

6 . На сторонах АВ и AD параллелограмма ABCD взяты точки М и N так, что прямые МС и NC делят параллелограмм на три равновеликие части. Найдите MN, если BD=d.

7 . Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается ее диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны между собой.

8 . Через точку пересечения диагоналей трапеции с основаниями и проведена прямая, параллельная основаниям. Отрезок этой прямой, заключенный между боковыми сторонами трапеции, равен .

9 . Трапеция разделена прямой, параллельной её основаниям, равным и , на две равновеликие трапеции. Тогда отрезок этой прямой, заключённый между боковыми сторонами, равен .

10 . Если выполняется одно из следующих условий, то четыре точки А, В, С и D лежат на одной окружности.

а) CAD=CBD = 90°.

б) точки А и В лежат по одну сторону от прямой CD и угол CAD равен углу CBD.

в) прямые АС и BD пересекаются в точке О и О А ОС=ОВ OD.

11 . Прямая, соединяющая точку Р пересечения диагоналей четырехугольника ABCD с точкой Q пересечения прямых АВ и CD, делит сторону AD пополам. Тогда она делит пополам и сторону ВС.

12 . Каждая сторона выпуклого четырёхугольника поделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками. Тогда эти отрезки делят друг друга на три равные части.

13 . Две прямые делят каждую из двух противоположных сторон выпуклого четырёхугольника на три равные части. Тогда между этими прямыми заключена треть площади четырёхугольника.

14 . Если в четырёхугольник можно вписать окружность, то отрезок, соединяющий точки, в которых вписанная окружность касается противоположных сторон четырёхугольника, проходит через точку пересечения диагоналей.

15 . Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

16. Свойства вписанного четырёхугольника со взаимно перпендикулярными диагоналями. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали АС и BD взаимно перпендикулярны и пересекаются в точке Р. Тогда

а) медиана треугольника АРВ перпендикулярна стороне CD;

б) ломаная АОС делит четырёхугольник ABCD на две равновеликие фигуры;

в) АВ 2 +CD 2 =4R 2 ;

г) АР 2 +ВР 2 +СР 2 +DP 2 = 4R 2 и АВ 2 +ВС 2 +CD 2 +AD 2 =8R 2 ;

д) расстояние от центра окружности до стороны четырёхугольника вдвое меньше противоположной стороны.

е) если перпендикуляры, опущенные на сторону AD из вершин В и С, пересекают диагонали АС и BD в точках Е и F, то BCFE - ромб;

ж) четырёхугольник, вершины которого - проекции точки Р на стороны четырёхугольника ABCD, - и вписанный, и описанный;

з) четырёхугольник, образованный касательными к описанной окружности четырёхугольника ABCD, проведёнными в его вершинах, можно вписать в окружность.

17 . Если a, b, c, d - последовательные стороны четырёхугольника, S - его площадь, то , причем равенство имеет место только для вписанного четырёхугольника, диагонали которого взаимно перпендикулярны.

18 . Формула Брахмагупты. Если стороны вписанного четырехугольника равны a, b, с и d, то его площадь S может быть вычислена по формуле ,

где - полупериметр четырехугольника.

19 . Если четырёхугольник со сторонами а , b, с, d можно вписать и около него можно описать окружность, то его площадь равна .

20 . Точка Р расположена внутри квадрата ABCD, причем угол PAB равен углу РВА и равен 15°. Тогда треугольник DPC - равносторонний.

21 . Если для вписанного четырёхугольника ABCD выполнено равенство CD=AD+ВС, то биссектрисы его углов А и В пересекаются на стороне CD.

22 . Продолжения противоположных сторон АВ и CD вписанного четырёхугольника ABCD пересекаются в точке М, а сторон AD и ВС - в точке N. Тогда

а) биссектрисы углов AMD и DNC взаимно перпендикулярны;

б) прямые МQ и NQ пересекают стороны четырёхугольника в вер­шинах ромба;

в) точка пересечения Q этих биссектрис лежит на отрезке, соеди­няющем середины диагоналей четырёхугольника ABCD.

23 . Теорема Птолемея. Сумма произведений двух пар противопо­ложных сторон вписанного четырёхугольника равна произведению его диагоналей.

24 . Теорема Ньютона. Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

25 . Теорема Монжа. Прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

27 . Четыре круга, построенных на сторонах выпуклого четырёхугольника как на диаметрах, покрывают весь четырёхугольник.

29 . Два противоположных угла выпуклого четырёхугольника - тупые. Тогда диагональ, соединяющая вершины этих углов, меньше другой диагонали.

30. Центры квадратов, построенных на сторонах параллелограмма вне его, сами образуют квадрат.

Окружность называется вписанной в четырехугольник, если все стороны четырехугольника являются касательными к окружности.

Центром этой окружности является точка пересечения биссектрис углов четырехугольника. В этом случае радиусы, проведенные в точки касания являются перпендикулярами к сторонам четырехугольника

Окружность называется описанной около четырехугольника, если она проходит через все его вершины.

Центром этой окружности является точка пересечения серединных перпендикуляров к сторонам четырехугольника

Не во всякий четырехугольник можно вписать окружность и не около всякого четырехугольника можно описать окружность

СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЕХУГОЛЬНИКОВ

ТЕОРЕМА В выпуклом вписанном четырехугольнике суммы противолежащих углов равны между собой и равны 180°.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих углов равны, то около четырехугольника можно описать окружность. Ее центр - точка пересечения серединных перпендикуляров к сторонам.

ТЕОРЕМА Если в четырехугольник вписана окружность, то суммы противолежащих сторон его равны.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность. Ее центр - точка пересечения биссектрис.

Следствия: из всех параллелограммов только около прямоугольника (в частности около квадрата) можно описать окружность.

Из всех параллелограммов только в ромб (в частности в квадрат) можно вписать окружность (центр - точка пересечения диагоналей, радиус - равен половине высоты).

Если около трапеции можно описать окружность, то она равнобедренная. Около любой равнобедренной трапеции можно описать окружность.

Если в трапецию вписана окружность, то радиус ее равен половине высоты.

Задания с решениями

1. Найти диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.

Центром окружности, описанной около прямоугольника является точка пересечения его диагоналей. Следовательно, диагональ АС равна 2R . То есть АС =10
Ответ: 10.

2. Около трапеции, основания которой 6 см и 8 см, а высота 7см, описан круг Найти площадь этого круга.

Пусть DC =6, AB =8. Так как около трапеции описана окружность, то она равнобедренная.

Проведем две высоты DM и CN .Так как трапеция равнобедренная, то AM=NB =

Тогда AN =6+1=7

Из треугольника ANС по теореме Пифагора найдем АС .

Из треугольника CВN по теореме Пифагора найдем ВС .

Окружность, описанная около трапеции, является и окружностью, описанной около треугольника АСВ.

Найдем площадь этого треугольника двумя способами по формулам

Гдe h - высота и - основание треугольника

Где R- радиус описанной окружности.

Из этих выражений получаем уравнение . Откуда

Площадь круга будет равна

3. Углы , и четырехугольника относятся как . Найдите угол , если около данного четырехугольника можно описать окружность. Ответ дайте в градусах

Из условия следует, что .Так как около четырехугольника можно описать окружность, то

Получаем уравнение . Тогда . Сумма всех углов четырехугольника равна 360º. Тогда

. откуда получаем, что

4.Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Тогда средняя линия равна

5. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

В трапеции радиус вписанной окружности равен половине высоты. Проведем высоту СК.

Тогда .

Так как в трапецию вписана окружность, то суммы длин противоположных сторон равны. Тогда

Тогда периметр

Получаем уравнение

6. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Пусть О центр описанной около трапеции окружности. Тогда .

Проведем высоту КН через точку О

Тогда , где КО и ОН высоты и одновременно медианы равнобедренных треугольников DOC и АОВ. Тогда

По теореме Пифагора.

«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:

Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?

Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность . Есть очень важное условие:

На нашем рисунке:

.

Посмотри, углы и лежат друг напротив друга, значит, они противоположные. А что же тогда с углами и? Они вроде бы тоже противоположные? Можно ли вместо углов и взять углы и?

Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет. Оставшиеся два угла тогда сами собой тоже дадут в сумме. Не веришь? Давай убедимся. Смотри:

Пусть. Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, . То есть - всегда! . Но, → .

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна.

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».

Вот как-то не получается.

Теперь применим знание:

предположим, что нам как-то удалось посадить на параллелограмм окружность. Тогда непременно должно быть: , то есть.

А теперь вспомним о свойствах параллелограмма:

у всякого параллелограмма противоположные углы равны.

У нас получилось, что

А что же углы и? Ну, то же самое конечно.

Вписанный → →

Параллелограмм→ →

Потрясающе, правда?

Получилось, что если параллелограмм вписан в окружность, то все его углы равны, то есть это прямоугольник!

И ещё при этом - центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника . Это, так сказать, в качестве бонуса прилагается.

Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность - прямоугольник .

А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция . Почему?

Вот пусть трапеция вписана в окружность. Тогда опять, но из-за параллельности прямых и.

Значит, имеем: → → трапеция равнобокая.

Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо - пригодиться:

Давай ещё раз перечислим самые главные утверждения , касающиеся четырехугольника, вписанного в окружность:

  1. Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна
  2. Параллелограмм, вписанный в окружность - непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
  3. Трапеция, вписанная в окружность - равнобокая.

Вписанный четырехугольник. Средний уровень

Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность , а есть такая теорема:

Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна .

На нашем рисунке -

Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.

Расшифровываем:

  1. «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна.
  2. «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна, то такой четырехугольник можно вписать в окружность.

Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».

А теперь разбираемся, отчего же верно и 1, и 2?

Сначала 1.

Пусть четырехугольник вписан в окружность. Отметим её центр и проведём радиусы и. Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь - сейчас применим, а если не очень - загляни в тему «Окружность. Вписанный угол» .

Вписанный

Вписанный

Но посмотри: .

Получаем, что если - вписанный, то

Ну, и ясно, что и тоже в сумме составляет. (нужно так же рассмотреть и).

Теперь и «наоборот», то есть 2.

Пусть оказалось так, что у четырехугольника сумма каких - то двух противоположных углов равна. Скажем, пусть

Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.

Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.

Рассмотрим оба случая.

Пусть сначала точка - снаружи. Тогда отрезок пересекает окружность в какой-то точке. Соединим и. Получился вписанный (!) четырехугольник.

Про него уже знаем, что сумма его противоположных углов равна, то есть, а по условию у нас.

Получается, что должно бы быть так, что.

Но это никак не может быть поскольку - внешний угол для и значит, .

А внутри? Проделаем похожие действия. Пусть точка внутри.

Тогда продолжение отрезка пересекает окружность в точке. Снова - вписанный четырехугольник, а по условию должно выполняться, но - внешний угол для и значит, то есть опять никак не может быть так, что.

То есть точка не может оказаться ни снаружи, ни внутри окружности - значит, она на окружности!

Доказали всю-всю теорему!

Теперь посмотрим, какие же хорошие следствия даёт эта теорема.

Следствие 1

Параллелограмм, вписанный в окружность, может быть только прямоугольником.

Давай-ка поймём, почему так. Пусть параллелограмм вписан в окружность. Тогда должно выполняться.

Но из свойств параллелограмма мы знаем, что.

И то же самое, естественно, касательно углов и.

Вот и получился прямоугольник - все углы по.

Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.

Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр - прямой.

Диаметр,

Диаметр

а значит, - центр. Вот и всё.

Следствие 2

Трапеция, вписанная в окружность - равнобедренная.

Пусть трапеция вписана в окружность. Тогда.

И так же.

Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.

Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону из точек и, равны), то такой четырехугольник - вписанный.

Это очень важный рисунок - в задачах часто бывает легче найти равные углы, чем сумму углов и.

Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:

« - вписанный» - и всё будет отлично!

Не забывай этот важный признак - запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.

Вписанный четырехугольник. Краткое описание и основные формулы

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна.

Параллелограмм, вписанный в окружность - непременно прямоугольник , и центр окружности совпадает с точкой пересечения диагоналей.

Трапеция , вписанная в окружность - равнобокая .